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Abstract

The prospect of utilizing lightweight robots in human’s daily lives has great
appeal. For example, lightweight robotic arms mounted on mobile platforms
can be used to assist elderly, disabled or immobilized people either on a daily
basis or as part of rehabilitation and training programs. The demand for
lightweight robotic arms in this context is, in many ways, intuitive, since
it is replacing the human arm. The human arm payload-to-weight ratio is
clearly that of an extreme lightweight robot. In order to meet the lightweight
criteria, design issues such as joint configurations, selection of motors and
gearboxes, structural dimensions, and most importantly, the robot mass,
have to be considered. Utilizing systematic optimization methods to reduce
the weight, while other issues are also considered, is a suitable approach to
handle such a complex task.

The objective of the project is to design a lightweight robotic arm for
people assistance applications. As a result, methods for optimal design
of lightweight robotic arms have been developed and implemented for
a 5 degrees of freedom topology. Both virtual and real prototyping
have been carried out, and modeling has covered such disciplines as
multibody kinematics and dynamics, drive-train dynamics and structural
finite element. To make the robot lightweight, the optimization method is
extensively utilized to minimize the mass of the robotic arm.

The optimization of the robotic arm is conducted at three different levels,
with the main objective to minimize the robot mass. At the first level, only
the drive-train of the robotic arm is optimized. The design process of a
robotic arm is decomposed into selection of components for the drive-train
to reduce the weight. The drive-train in each joint is modeled so that the
calculated torque of each joint can be easily referenced to the rotor of motor.
Three constraints are formulated on the performance of motors, and three
constraints are on gearboxes. A co-simulation platform is developed, that
returns the optimal selection of motors and gearboxes for each joint.

At the second level, kinematic data is combined with the drive-train
in the optimization. For this purpose, a dynamic model of the robot
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is required. Constraints are formulated on the motors, gearboxes and
kinematic performance. The integrated optimization can reduce the
weight further than the method with drive-train optimization only. Case
studies are conducted for different robot trajectories and different kinematic
performance constraints.

At the third level, a systematic optimization approach is developed, which
contains design variables of structural dimensions, geometric dimensions
and drive-train components. Constraints are formulated on the stiffness
and deformation. The stiffness and deformation of the arm are calculated
through FEA simulation. A trajectory generator has been developed to
evaluate different trajectories. A group of four trajectories is chosen to
conduct kinematic and dynamic simulation of the robotic arm.

In all the three levels, the problems of optimization are solved by a non-
gradient optimization algorithm, the Complex method. The optimizations
in these levels reduce the weight of an initial reference design by 38%, 41%,
and 50% respectively. A prototype of the robotic arm is designed and built
in the project. The prototype weighs 14 kg with a payload capacity of 5
kg, and is controlled via software developed in the project dedicated to the
prototype.

The control strategy used to control the motion of a human arm could
perhaps be utilized in the control of the designed robotic arm. A preliminary
study on the optimal control of lightweight robotic arms has been conducted.
The main control strategy has been to employ energy-optimal trajectories
so as to minimize the required energy consumption by comparing with the
human arm. As part of this study, both a musculoskeletal model and an
analytical simplified human arm model have been developed. Comparative
studies have been conducted, while the two proposed models are similar to
a reference model in predicting energy-optimal trajectories. The analytical
model is the most efficient among the three models.
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1
General Introduction

The thesis presents research work on the modeling, design and optimization
of a lightweight robotic arm for people assistance applications. In the design
process, novel optimization methods have been developed to reduce the mass
of the whole robotic arm.

1.1 Background

Lightweight robots are robots especially designed for mobility and interac-
tion with a priori unknown environments and with humans. These appli-
cations pose the requirements of a lightweight design with high payload-to-
weight ratio and high level of safety. The lightweight anthropomorphic arm
is a new kind of robotic manipulators for people assistance applications
in human and robot coexistence environments. The robotic arm has the
potential to assist elderly and disabled people in their daily living. Many of
these people are not capable of dealing with their own living tasks, such
that they need round-the-clock assistance, which is very demanding on
the resources of the surroundings. For this reason, these people would
benefit significantly from a safe anthropomorphic robotic arm mounted on
an electric wheelchair or a table and performing simple tasks such as picking
and placing a bottle of water or holding a book.

The anthropomorphic robotic arm has to be lightweight. Industrial
manipulators, which are normally heavy, rigid, suitable for operations with
high speed and precision, are dangerous to humans and cannot be used for
people assistance applications. The anthropomorphic robotic arm, however,
can coexist and interact with humans. To achieve this goal, the arm has
to be lightweight, compact, and energy efficient. This can be accomplished
with optimization methods which are able to take multiple design issues
into considerations simultaneously.
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1.2 Lightweight robots

An application of lightweight robot in people assistance applications is
demonstrated in Fig. 1.1. Some robotic systems relevant to this kind of
assistive systems have been reported, such as FRIEND-I and FRIEND-II
[1], KARES II [2], RAPTOR [3].

Figure 1.1: A lightweight anthropomorphic robotic arm mounted on an electric
wheelchair.

Different concepts have been utilized in order to achieve lightweight design
(see Fig. 1.2). DLR’s robotics lab designed a 7-dof torque-controlled
lightweight robotic arm with a payload-to-weight ratio of 1:1, while its own
weight is 14 kg [4]. It is interesting to notice that this arm follows the
architecture of typical industrial manipulators. To overcome the pyramidal
effect, the DLR’s arm is built with customized motors, Harmonic Drive
gears, electronics, and linkages of carbon fiber material. To ensure dynamic
control of the DLR arm, torque sensors are mounted on the flex spline
component of the Harmonic Drive gear and therefore measure the joint
torques acting on the links. An additional bearing decouples the disturbing
forces and torques.

Kinova technology released a novel 6-dof lightweight robotic arm named
JACO [5]. The JACO arm weighs 5 kg with a payload capacity of 1.5 kg.
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A 5-dof self-containing lightweight manipulator was presented in [6] with a
portable docking concept from wheelchair to docking stations in the room.
The robot is capable of fitting into a wide range of adapted environments,
which has significant implications for the care of the disabled and elderly
people with special needs. The modularity of the system makes it possible
for the system to grow as the level of disability of the user changes. The
MANUS manipulator weighs only 9 kg, which is designed to be mounted
on an electric wheelchair [7]. The 6-dof MANUS arm can be controlled by
a keypad, a joystick or even by single-button control.

Figure 1.2: Selected lightweight robotic arms, (a) DLR arm, (b) WAM, (c) JACO,
(d) MANUS.

The whole arm manipulator (WAM) developed originally at MIT and
commercialized by Barrett Technology is a 7-dof lightweight arm driven
by cable and cylinder transmissions [8]. The WAM arm has been designed
with emphasis on transmissions, zero backlash, low friction and low inertia,
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endowing the WAM with good open-loop backdriveability. Two key benefits
of the high backdriveability are: (1) motion control through joint torque
control, which enables the intrinsic sensing of forces over the whole arm and
makes it inherently safe to humans; (2) operation directly in the Cartesian
domain without the need for inverse kinematics calculations. Ananiev et
al. [9] designed a 6-dof reconfigurable lightweight robotic arm mounted
on a mobile robot. There are also some notable robotic arms assembled on
humanoid robots including WABIAN-2 from Waseda University [10], Asimo
of Honda [11], ARMAR from Karlsruhe University [12], Domo from MIT
[13]. Out of them, Asimo and Domo have arms of 5 dof, while WABIAN-2
and ARMAR have arms of 7 dof.

1.3 Robot optimization

The design of lightweight robots faces many challenges, varying from
power supply, actuators, power transmission and structural parts. New
methods are required to meet these design challenges for lightweight designs.
Optimization plays a key role in the design process.

1.3.1 Drive-train optimization

Different methods for optimal selection of motor and gear in mechatronic
systems have been proposed. A method of finding the best motor/gear
ratio combination for any given load with respect to weight, size, peak
power, torque and efficiency was presented in [14]. Including the gearhead
inertia and efficiency in the design process can give a large difference in
the motor/gear ratio selection. Pasch and Seering proposed the optimal
transmission ratio nm/nl =

√
Jl/Jm and the optimal duration of motion

between two points of velocity-limited systems [15]. A general method of
motor and gearbox selection and optimization of servo drive system was
introduced in [16, 17]. The method automated the solution procedure
for the servo drive design problem by virtue of the normalization of
torques, velocities, and transmission ratios. Moreover, the selection criteria
separated the motor characteristics from the load characteristics and its
graphical representation facilitated the feasibility check of a certain drive
and the comparison between different systems. These methods above are
applicable to the design of a single joint combining a motor and a gearbox,
and they do not address the discrete nature of the selection process.

For design of robotic drive train consisting of multiple joints, the challenge
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is that not only the characteristics of motor and gearbox at a single joint,
but also the dynamics of the robot should be taken into account. An early
attempt on drive-train design optimization can be found in [18], in which
Chedmail and Gautier proposed a method for the optimum selection of
robot actuators to minimize the total mass of all actuators. The modeling
of the system took into account the inertia of the links and actuators, viscous
and Coulomb friction effects, and the thermal model of the actuators as well.

A design optimization method on the drive-train of two joints was proposed
for an industrial manipulator [19]. It presented an optimization strategy
for finding the trade-offs between cost, lifetime, and performance when
designing the drive-train for new robot concepts. The method was
illustrated with an example in which the drive trains of two principal axes
of a six-axis serial manipulator were designed. The method also included
the trajectory generation of the robotic arm in the design loop to evaluate
the impact of the trajectory.

A simulation environment called Modelica with robot optimization facilities
was presented in [20], where the parameters of a controller and the drive-
train were tuned by a multi-criteria parameter optimization method to
improve the system dynamics. Dynamic loading criteria were addressed in
the selection of actuators for optimal dynamic performance [21]. Dynamic
performance was measured in terms of the robot’s ability to accelerate the
end-effector and to apply forces to the environment with given limitations
on actuator torques. Dynamic capability equations [21] were used to model
the relationship between actuator torque capacities and the acceleration and
force capabilities. The selection of drive-train configuration for gear coupled
manipulators was optimized for optimum dynamic performance in [22]. The
kinematic structure of the gear coupled manipulator was described by an
equivalent open-loop chain driven by mechanical power transmission lines.
Gear ratios, location of actuators and details of mechanical transmission
lines were determined according to the optimization.

1.3.2 Dimensional optimization

Dimensional optimization can contribute to the improvement of robotic
performance, either kinematic performance or dynamic one. An integrated
structure-control design optimization method of a two-link flexible robot
arm was presented, where the structural and control parameters were
optimized simultaneously [23]. The method used a genetic algorithm
and the performance was compared with that of an arm with uniform
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links and an optimized control system. The simultaneous optimization
yielded a design with higher bandwidth and less weight of the arm
system. An optimal design of manipulator parameter using an evolutionary
optimization method was proposed in [24], in which a modification in
differential evolution optimization technique was proposed to incorporate
the effect of noises in the optimization process and obtain the optimal design
of a manipulator. An optimum robot design method based on a specified
task was proposed [25], in which dimensions were optimized based on
dynamic analysis. Three evolutionary techniques were applied to minimize
the torque required to perform the defined motion subject to constraints
on link parameters and the end-effector deflection. A method for optimal
dynamic performance was reported in [26], which consists of a parameter
optimization using the motion time along the path as the cost function.
Kinematic dimensions and actuator parameters were optimized through the
dynamic optimization in manipulator design [27]. The dynamic model of
the end-effector in operational space formulation was used to establish the
relationship between joint torques and end-effector acceleration in the form
of transformation matrices.

1.3.3 Structural optimization

Lightweight design of structural parts may lead to a significant reduction in
the weight of the robot. Regarding structural optimization, finite element
analysis (FEA) is widely used. FEA was utilized to conduct structural
topology optimization in the design of humanoid robots [28]. Multibody
system simulation (MBS) was employed to investigate the dynamics of
the robot. By integrating MBS simulation into structural optimization
processes, components in mechatronic systems could be optimized regarding
the interaction between parts of mechanical properties and the overall
system dynamics. FEA based design optimization was conducted on a 2-
dof robot to minimize the vibration frequency [29]. The optimized design
was compared with an experimental investigation of the structural vibration
frequencies obtained on the actual manipulator. The utilization of FEA in
robotic arm design and structural optimization can be found in [30].

The above robotic optimization technologies are summarized in Table 1.1.
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Table 1.1: Overview of the robotic optimization technology.

No. Objective Design Constraints Optimization Ref.
Variables Algorithm

1 total mass motor mass minimize motor
torques

KTNC1 [18]

2 mass, cost motor
torques

motor, joint dy-
namics

Complex [19]

3 control
performance

controller,
drive-train

dynamics Pattern
search, GA2

[20]

4 dynamic perfor-
mance

motor selec-
tion

motor torques - [21]

5 control
performance

structural di-
mension

control GA [23]

6 kinematic
and dynamic
performance

geometric
dimension,
link mass

boundary limits GA [24]

7 joint torques structural di-
mension

stiffness, deflec-
tion

GA [25]

1 Kuhn-Tucker Necessary Conditions
2 Genetic Algorithm

1.4 Optimization methods

Optimization of robots becomes a discrete problem when design variables of
motors and gearboxes are included. To this kind of problem, non-gradient
methods are more robust in locating the global optima and are applicable
in a broader set of problem domains.

There is a great number of non-gradient optimization methods. The
Complex method was developed by Box [31]. The genetic algorithm
[32] developed by Holland was robust in finding the global optimum.
Simulated annealing was then developed by Kirkpatrick [33]. This method
makes very few assumptions regarding the function to be optimized, and
therefore, it is quite robust with respect to irregular surfaces. Apart
from these methods, there are also other promising techniques to conduct
engineering optimization, for instance Tabu search method [34], response
surface approximations [35] and particle swarm method [36].

The selection of methods depends on the problem and how well the method
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fits the particular problem. This thesis is focused on non-gradient methods,
as they are better suited for the design problems. Another advantage of
non-gradient methods is that they do not require any derivatives of the
objective function in order to find the optimum. Therefore they can be
used as black-box methods without any need for continuous variation of the
objective function. In this thesis, the objectives are results of computer
simulations, such that the derivatives of the objective function are not
explicitly known. In the work of the thesis, the Complex method [31] is
extensively utilized, because it is easy to implement and parameterize [37].
Comparison of optimization methods has not been within the scope of this
work.

1.5 Scope of work

The aim of this project is to design a lightweight robotic arm for people
assistance applications. The works involved in the thesis are summarized
in Fig. 1.3.

Robotic 
Arm

Robotic theory

Dynamics

Drive train

Trajectory 
planning

Control system

Sensor

Control theory

Kinematics

Structural 
design

Motor

Gear transmission

Involved in 
the thesis

Figure 1.3: Different fields of technology involved in the architecture of robotic
arms.

To reduce the weight of the robotic arm, optimization method will be
developed in the design process. The approach of the project is summarized
in the following steps:
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1. Study basic kinematics and dynamics of robotic arms.

2. Model and design a 5-dof lightweight robotic arm.

3. Optimize the robotic arm to reduce the weight.

(a) Optimize the drive-train components (motors and gearboxes).
(b) Optimize the link lengths together with the drive-train.
(c) Optimize the structural dimensions, link lengths and the drive-

train.

4. Study control strategy for the anthropomorphic arm through simula-
tion on human arm models.

Step 1: Basic knowledge of kinematics and dynamics of robotic arms is
studied at this step.

Step 2: The robotic arm is designed with five joints (dof), following the
inspiration from a human arm. The arm is configured with two joints at
the shoulder, one at the elbow and two at the wrist. Forward kinematics
and inverse kinematics are modeled for the robotic arm. Parameterized
dynamic model of the robotic arm is built in MatlabTM. The model will be
used later as a simulation platform to conduct optimization.

Step 3(a): Drive-train design optimization is conducted on the robotic arm
to reduce the total weight. The required driving torques of the robotic
arm are determined from inverse kinematic and dynamic analysis within
MSC.ADAMSTM 1. The inverse kinematic and dynamic analysis of the
robotic arm in ADAMS follows a so-called master-slave approach. The
whole simulation system is developed as a simulation package, which will
be called by the optimization program. In the dynamic simulation model,
the mass of motors and gearboxes are parameterized, while the trajectory
of the robotic arm is prescribed. For each updated motors and gearboxes,
the required motor torques are calculated through the detailed drive-train
model. The mass of distribution is updated during the optimization
procedure. Modeling required at this step:

• Kinematics

• Dynamics
1MSC.ADAMS, a multibody dynamics simulation software.
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• Drive-train modeling

Step 3(b): Geometric dimensions will be included together with drive-
train in the robot optimization, aiming to reduce further the weight. The
optimization of the geometric dimension can also lead to better kinematic
performance through constraints on performance indices. Modeling required
besides those in step 3(a) is Global conditioning index.

Step 3(c): The simulation and optimization platform developed in steps 3(a)
and 3(b) is expanded to contain more design variables on the structural
dimensions. To maintain the performance of the robot, stiffness and
deformation are set as constraints. ANSYSTM Workbench is utilized to
conduct finite element analysis on the whole body of the robotic arm.
The outcomes of the optimization are the minimized weight, optimal
structural dimensions, optimal geometric dimension and optimal drive-train
components. Modeling required besides those in step 3(b) is Finite element
modeling of the whole robot.

Step 4: Control strategy of the human arm could provide inspiration of
controlling the designed robotic arm. The trajectory generation strategy
of a human arm for planar motion is studied in this step. Two human
arm models are built, one anatomical musculoskeletal model built in the
AnyBodyTM 2 Modeling System, and one analytical model. Metabolic energy
costs are calculated with the two human arm models for parameterized arm
trajectories. Energy optimal trajectories are obtained and compared to a
reference model. The preliminary study of the human arm control strategy
will lead to control method of the anthropomorphic arm in the future work.

1.6 Outline of thesis

The thesis is outlined as follows

Chapter 2 introduces the modeling and design of the robotic arm. Technical
details for the prototype of the 5-dof robotic arm are described in this
chapter. Kinematic and dynamic models of the robotic arm are built
for conducting simulations. The modeling of kinematics and dynamics is
implemented in Matlab, and presented with a numerical example.

Chapter 3 details design and optimization on the drive-train of a 5-dof
lightweight robotic arm. Optimal selections of motors and gearboxes

2AnyBody, a musculoskeletal modeling and simulation software.
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from a limited catalogue of commercially available components are done
simultaneously for all joints of a robotic arm. Characteristics of the motor
and gearbox, including gear ratio, gear inertia, motor inertia, and gear
efficiency, are considered in the drive train modeling. A co-simulation
method is developed for dynamic simulation of the arm. A design example
is included to demonstrate the proposed design optimization method.

Chapter 4 describes an integrated method to optimize geometric dimension
and drive-train of a robotic arm. The method addresses the influences of
dimensions and characteristics of drive-trains in the design optimization.
Constraints are formulated on the basis of kinematic performance and
dynamic requirements, whereas the main objective is to minimize the total
mass. Case studies are included to demonstrate the application of the
optimization method in the design of assistive robots.

Chapter 5 details a new approach to the design and optimization of
lightweight robotic arms, where robot kinematics, dynamics, drive-train
design and strength analysis by means of FEA are considered. The approach
makes use of a discrete parameterized robotic model, in which kinematic
dimensions, structural dimensions, the motors and gearboxes from com-
mercially available components are parameterized as design variables for
design analysis and optimization. A co-simulation platform is developed,
which couples Matlab with ANSYS Workbench simulations in one package.
A group of four trajectories is used to conduct kinematics and dynamics
simulation on the robotic arm.

Chapter 6 presents the study on the human arm motion to understand the
strategy of generating energy optimal trajectories. The human arm moves
in plane between groups of target points. One analytical model and one
anatomical musculoskeletal model of the human arm are built. The two
models also contain detailed model of the metabolic energy consumption.
The arm trajectory is parameterized and formulated with the Fourier series,
such that a group of trajectories can be evaluated with the models to
estimate metabolic cost. The optimal trajectory is identified for each model
and different target points. The performance of the two proposed models
is compared to a reference model.

Chapter 7 concludes the thesis, with a summary of the findings of the work
and contributions. Future works are also stated.

Note that Chapters 3 to 6 are written as full journal publications in this
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dissertation. This causes some overlap between some chapters, but it also
means that they can be read individually.



2
Design and Modeling of the
Robotic Arm

The design and modeling of the robotic arm are the fundamental base
of conducting optimization afterwards. This chapter introduces the
mechanical design and technical details of the robotic arm, and also details
the kinematic and dynamic modeling, followed by a numerical example.

2.1 Design of robotic arm

The design of the robotic arm is detailed with design considerations
addressing the assisted living applications. Some technical details of the
prototype are introduced as well.

2.1.1 Design considerations

The robotic arm is an anthropomorphic arm as it follows the nature design
of a human arm. A human arm consists of seven dof, three at the shoulder,
two at the elbow, and two at the wrist. The concept design of the robotic
arm includes 5 dof, which reduces one dof in the shoulder and one in
the elbow. When the concept design has been determined the physical
properties from the design can be used to recalculate motions and torques.
These can then again be used to redesign the first concept to a new and
better one. This iteration process would be efficient to put inside an
optimization procedure, where motors, gearboxes and structural design
would be optimization factors.

The robotic arm will be used to handle daily tasks of people assistance
applications. The total reach distance is 1 m (without the gripper), which
is a bit longer than a human arm. The workspace of each joint is based on
the corresponding joint workspace of the human arm. The range of each
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joint workspace is listed in Table 2.1.

Table 2.1: Joint workspace of the robotic arm.

Joint i Max Workspace Constrained Workspace
1 0 ∼ 2π 0 ∼ π
2 0 ∼ 3π/2 0 ∼ 3π/2
3 0 ∼ 3π/2 0 ∼ 3π/4
4 0 ∼ 2π 0 ∼ 2π
5 0 ∼ 3π/2 0 ∼ 3π/4

The 5-dof robotic arm designed in this work adopts a modular approach.
Harmonic DriveTM CPU series gearboxes are used as transmission elements
and, simultaneously, as the mechanical joints for different dof. To increase
the torque capabilities of Joints 1, 2 and 3, a second stage of gearhead is
used between Harmonic Drive and the motor. Joints 2, 3 and 5 adopt the
similar configurations. In Joint 4, only geared motor is used to transmit
torque through bearing supported shaft, as shown in Fig. 2.1.

Joint 1
Joint 2

Joint 3

Joint 4

Joint 5

Section view of Joint 2

Harmonic 
drive

Gearhead Motor

Bearings

Coupling

Motor

Joint 4

Shaft

Figure 2.1: CAD rendering of a 5-dof lightweight anthropomorphic arm.
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The structural parts are designed with the main criteria of minimizing the
mass. Each joint is designed to contain the gearbox and motor in its housing
in case of damage.

2.1.2 Technical details

The arm joints are driven by electrical motors, chosen among MaxonTM DC
motors. The DC motors on the robot are from the Maxon RE series. The
five motors have different power ratings, depending on the load in the joints;
the used models are 60 W, 70 W, and 90 W. Table 2.2 shows the type of
DC motor for each joint. For precise measurement of the angle during
operation, an encoder is mounted on each motor. These are of the type
Maxon motor Encoder MR, Type L, 1024 CPT, 3 Channels, and provide a
relative measurement of the angle with 1000 pulses each turn.

Each motor is connected to an amplifier, namely, the Maxon EPOS2 24/5
amplifier, which has a built-in PID-controller, A/D converter, digital I/O,
and CAN-bus. The built-in PID-controller enables speed and position
control by use of the encoders mounted on the motors. Additionally, the
EPOS amplifier also enables current control, i.e. torque control of the
motor. The interface to the EPOS amplifier adopts the CANopen protocol
which ensures that the measurements can be fetched and the control of the
motors can be achieved digitally via the CANopen bus, i.e. the entire motor
set-up is noise immune.

Table 2.2: Technical details of the robotic arm.

Joint i Motor Motor Gearhead Harmonic Total
Power Drive Ratio

1 RE 35 90 W GP 42C CPU 17A 430
2 EC-i 40 70 W GP 32C CPU 17A 1400
3 EC-i 40 70 W GP 32C CPU 14A 370
4 RE 30 60 W GP 32A - 51
5 EC-i 40 70 W - CPU 14A 100

2.2 Kinematics

The lightweight robotic arm is a serial manipulator consisting of several links
connected in series by revolute joints. For a robot to perform a specific task,
the location of the end-effector relative to the base should be established
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first. This is called the position analysis problem. There are two types of
position analysis problems: forward kinematics and inverse kinematics. In
forward kinematics, the joint variables are given and the problem is to find
the location of the end-effector. In inverse kinematics, the location of the
end-effector is given and the problem is to find the joint variables necessary
to bring the end-effector to the desired location.

2.2.1 Forward kinematics

Following Denavit-Hartenberg’s convention [38], a Cartesian coordinate
system is attached to each link of a manipulator, as shown in Fig. 2.2.

Figure 2.2: Robotic arm coordinate system.

Having established a coordinate system to each link of a manipulator, a
4× 4 transformation matrix relating two successive coordinate systems can
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be established.

i−1Ai =


cθi −cαisθi sαisθi aicθi
sθi cαicθi −sαicθi aisθi
0 sαi cαi di
0 0 0 1

 (2.1)

According to the coordinate systems established in Fig. 2.2, the correspond-
ing link parameters are listed in Table 2.3.

Table 2.3: D-H parameters of the robotic arm.

Joint i αi ai di θi

1 π/2 0 h1 θ1

2 0 l1 0 θ2

3 π/2 0 0 θ3

4 −π/2 0 l2 θ4

5 π/2 0 d1 θ5

Substituting the D-H link parameters into Eq. (2.1), we obtain the D-H
transformation matrices:

0A1 =


cθ1 0 sθ1 0
sθ1 0 −cθ1 0
0 1 0 h1

0 0 0 1

 , 1A2 =


cθ2 −sθ2 0 l1cθ2

sθ2 cθ2 0 l1sθ2

0 0 1 0
0 0 0 1

 (2.2)

2A3 =


cθ3 0 sθ3 0
sθ3 0 −cθ3 0
0 1 0 0
0 0 0 1

 , 3A4 =


cθ4 0 −sθ4 0
sθ4 0 cθ4 0
0 −1 0 l2
0 0 0 1

 (2.3)

4A5 =


cθ5 0 sθ5 0
sθ5 0 −cθ5 0
0 1 0 d1

0 0 0 1

 (2.4)
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The end-effector location is given by

0A5 =


ux vx wx qx
uy vy wy qy
uz vz wz qz
0 0 0 1

 (2.5)

The loop-closure equation is obtained by
0A5 = 0A1

1A2
2A3

3A4
4A5 (2.6)

Substituting Eqs. (2.2) through (2.4) into (2.6) yields the elements of 0A5

as follows:

ux = cθ5(sθ1sθ4 + cθ1cθ23cθ4)− cθ1sθ23sθ5

uy = −cθ5(cθ1sθ4 − sθ1cθ23cθ4)− sθ1sθ23sθ5

uz = cθ23sθ5 + sθ23cθ4cθ5

vx = sθ1cθ4 − cθ1cθ23sθ4

vy = −sθ1cθ23sθ4 − cθ1cθ4

vz = −sθ23sθ4

wx = sθ5(sθ1sθ4 + cθ1cθ23cθ4) + cθ1sθ23cθ5

wy = −sθ5(cθ1sθ4 − sθ1cθ23cθ4) + sθ1sθ23cθ5

wz = sθ23cθ4sθ5 − cθ23cθ5

qx = l1cθ1cθ2 + l2cθ1sθ23 + d1 · (sθ1cθ4 − cθ1cθ23sθ4)

qy = l1sθ1cθ2 + l2sθ1sθ23 − d1 · (cθ1cθ4 + sθ1cθ23sθ4)

qz = h1 + l1sθ2 − l2cθ23 − d1sθ23sθ4

2.2.2 Inverse kinematics

Inverse kinematics of the robotic arm is also part of the position analysis.
We present a more efficient method of solution by separating the wrist-
center-position problem from the orientation problem. Note that the last
two joint axes (Z4 and Z5) intersect at the wrist center point C as shown
in Fig. 2.2. Hence rotations of the last two joints do not affect the position
of C. Figure 2.3 shows the end-effector coordinate system (X5, Y5, Z5), the
wrist center C, and the vector relation between them.

The homogeneous position vector of the wrist center expressed in the end-
effector coordinate system is

5p = [0, 0,−d1, 1]T (2.7)
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Figure 2.3: Hand coordinate system and wrist center position.

when expressed as in the base coordinate system, it becomes

0p = 0A5
5p =


px
py
pz
1

 =


qx − d1wx
qy − d1wy
qz − d1wz

1

 (2.8)

Hence, given the end-effector location, we can find the position of the wrist
center point C with respect to the base coordinate system. Furthermore,
we observe from Fig. 2.2 that the position of the wrist center C with respect
to the link 3 coordinate system is given by

3p = [0, 0, l2, 1]T (2.9)

Transforming 3p into the base coordinate system, we obtain

0p = 0A3
3p (2.10)

Equation (2.10) consists of three scalar equations in three unknowns.
Hence the position and orientation of the inverse kinematics problem are
decoupled. Solutions of the joint angles θ1, θ2, and θ3 are presented, which
are
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θ1 = arctan

(
py
px

)
, 0 ≤ θ1 ≤ π (2.11)

θ3 = arctan (sθ3, cθ3) , 0 ≤ θ3 ≤ π (2.12)

where
px = qx − d1wx, py = qy − d1wy, pz = qz − d1wz

κ1 = l21 + l22, κ2 = 2l1l2, κ3 = p2
x + p2

y + (pz − h1)2, κ2
2 − (κ3 − κ1)2 > 0

sθ3 = (κ3 − κ1)/κ2, cθ3 =

√
1− ((κ3 − κ1)/κ2)2

Upon solved θ1 and θ3, θ2 is obtained as

θ2 = arctan
µ1η2 + η1ζ1

µ1η1 − ζ1η2
(2.13)

with

µ1 = l1 + l2sθ3, ζ1 = l2cθ3, η1 = pxcθ1 + pysθ1, η2 = pz − h1

Once θ1, θ2, and θ3 are solved, 0A3 is completely known. The remaining
joint angles can be found by multiplying both sides of Eq. (2.6) by (0A3)

−1

3A5 = (0A3)
−10A5 (2.14)

0A3 can be calculated by

0A3 = 0A1
1A2

2A3 =


cθ1cθ23 sθ1 cθ1sθ23 l1cθ1cθ2

sθ1cθ23 −cθ1 sθ1sθ23 l1sθ1cθ2

sθ23 0 −cθ23 h1 + l1sθ2

0 0 0 1

 (2.15)

While 3A5 could be obtained as

3A5 = 3A4
4A5 =


cθ4cθ5 −sθ4 cθ4sθ5 −dsθ4

sθ4cθ5 cθ4 sθ4sθ5 dcθ4

−sθ5 0 cθ5 l2
0 0 0 1

 (2.16)

We note that the elements on the right-hand side of Eq. (2.14) are known,
i.e.,

(0A3)
−10A5 =
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uxcθ1cθ23 + uysθ1cθ23 + uzsθ23 vxcθ1cθ23 + vysθ1cθ23 + vzsθ23

uxsθ1 − uycθ1 vxsθ1 − vycθ1

uxcθ1sθ23 + uysθ1sθ23− uzcθ23 vxcθ1sθ23 + vysθ1sθ23 − vzcθ23

0 0

wxcθ1cθ23 + wysθ1cθ23 + wzsθ23 qxcθ1cθ23 + qysθ1cθ23 + (qz − h1)sθ23

wxsθ1 − wycθ1 qxsθ1 − qycθ1

wxcθ1sθ23 + wysθ1sθ23 − wzcθ23 qxcθ1sθ23 + qysθ1sθ23 − (qz − h1)cθ23

0 1


(2.17)

only the rotation part of Eq. (2.14) is needed for computation of the last two
joint angles. The rotation matrices are given by the upper 3×3 sub-matrices
of Eqs. (2.15) and (2.16), respectively.

Equating the (3, 3) elements of Eqs. (2.16) and (2.17) yields

θ5 = arccos (r33), 0 < θ5 < π (2.18)

where r33 = wxcθ1sθ23+wysθ1sθ23−wzcθ23. Corresponding to each solution
set of θ1, θ2, and θ3, Eq. (2.18) yields (1) two real roots if |r33| < 1, and
(2) θ5 = 0 or π if |r33| = 1. When θ5 = 0 or π, the end-effector coordinate
system Z-axis, Z5, is in line with the fourth joint axis, Z3, and the wrist
is said to be in a singular configuration. The condition |r33| > 1 cannot
physically arise.

Assuming that sθ5 6= 0, we can solve θ4 as follows. Equating the (1, 3)
element of Eqs. (2.16) and (2.17) yields

cθ4 =
wxcθ1cθ23 + wysθ1cθ23 + wzsθ23

sθ5
(2.19)

Equating the (2, 3) element of Eqs. (2.16) and (2.17) yields

sθ4 =
wxsθ1 − wycθ1

sθ5
(2.20)

Hence, corresponding to each solution set of θ1, θ2, θ3, and θ5, Eqs. (2.19)
and (2.20) yield a unique solution of θ4,

θ4 = arctan (sθ4, cθ4) (2.21)
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2.3 Dynamics

Dynamics deals with the forces and torques that cause the motion of a
system of bodies. Analogously to direct and inverse kinematics analysis,
there is direct and inverse dynamic analysis.

2.3.1 Jacobian matrix

The joint angular velocity can be calculated with the Jacobian matrix

θ̇ = J−1vef (2.22)

where θ̇ = [θ̇1, θ̇2, . . . , θ̇n]T denotes an n-dimensional (n denotes the number
of dof) vector of the joint angular velocities, J is the Jacobian of the robotic
arm, and vef the velocity of the end-effector.

For a revolute joint, the Jacobian matrix can be calculated by [39]

J = [j1, j2, . . . , jn] , ji =

[
zi−1 × pi−1

zi−1

]
(2.23)

where zi−1 and pi−1 are given by

zi−1 = Ri−1 [0 0 1]T , pi−1 = Ri−1qi−1 + pi (2.24)

where qi−1 = [ai cos θi, ai sin θi, di]
T, Ri−1 denotes the rotation matrix from

the reference coordinate system to the (i − 1)th coordinate system. The
local coordinates of the end-effector are defined as pn = [0, 0, 0]T. When
the desired end-effector velocity vef is given, the joint angular velocity can
be solved by Eq. (2.22).

2.3.2 Inverse dynamics

The computation of the inverse dynamics is a prerequisite for evaluating
any given design with given load and prescribed trajectory. Here we briefly
recall the Lagrange-Euler formulation. The Lagrange equation is

d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
= τi; i = 1, . . . , n (2.25)

where the Lagrangian L = K − U =
∑n

i=1(Ki − Ui). For the ith link, the
kinetic energy Ki and the potential energy Ui are given by

Ki =
1

2
miv

T
c,ivc,i +

1

2
ωTi Iiωi; Ui = mig

Tpc,i (2.26)
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where vc,i denotes the linear velocity of the center of mass for link i, ωi is
the angular velocity of the same link, and Ii is the inertia matrix of link i
with respect to its center of mass. Moreover, pc,i is the position vector of
the center of mass for link i, measured in the reference coordinate system.

The governing equation of the arm motion can be written as

M(θ)θ̈ + V(θ, θ̇) + G(θ) = τ (2.27)

where M is the mass matrix, V is the vector of Coriolis and centrifugal
terms of the links, G is the vector of gravitational forces, τ is the vector of
joint torques, and θ is the vector of joint angles.

The mass matrix M can be calculated as

M =

n∑
i=1

(JT
v,imiJv,i + JT

ω,iIiJω,i) (2.28)

where Jv,i and Jω,i are 3 × n matrices. For revolute joint, the jth column
vectors of Jv,i and Jω,i can be obtained by [39]

jjv,i = zj−1 × pj−1
c,i , j

j
ω,i = zj−1, for j ≤ i (2.29a)

jjv,i = jjω,i = [0 0 0]T , for i < j ≤ n (2.29b)

where pj−1
c,i is a position vector defined from the origin of the j−1 link frame

to the center of mass of link i and expressed in the base frame. Moreover,
mi is the mass of the link i. For each link, its mass is found as

mi = ms,i +mm,i +mg,i (2.30)

where ms,i is the mass of the arm structure, which is proportional to the
link length. mm,i and mg,i are the masses of motor and gearbox for the ith
joint. Both mi and Ii vary with the selections of motors and gearboxes, and
the link lengths as well.

2.3.3 A numerical example

The modeling of kinematics and dynamics is implemented in Matlab. One
example simulation is executed on the 5-dof lightweight robotic arm to
evaluate the modeling of kinematics and dynamics. The trajectory of the
end-effector in the base coordinate system is defined as Xef (t) = 5+400(1−
cos(t)), Yef (t) = −990+800(1−cos(t/2)), and Zef (t) = 280+250(cos(t/2)−
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1), all with unit of mm. The Euler angles for the end-effector are given as
[0, cos(t/180), 0], which implies the end-effector remains horizontal during
the prescribed motion. The trajectory of the robotic arm is depicted in
Fig. 2.4.
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Figure 2.4: Trajectory of the robotic arm.

The joint angular velocities and accelerations are solved through Eq. (2.22).
The solved results are depicted in Fig. 2.5 and Fig. 2.6.

Through the modeling of inverse dynamics, the solved joint torques are
illustrated in Fig. 2.7.
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Figure 2.5: Angular velocities of the robotic arm.
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Figure 2.6: Angular accelerations of the robotic arm.
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Figure 2.7: Joint torques of the robotic arm.
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Abstract

A drive train optimization method for design of light-weight robots is
proposed. Optimal selections of motors and gearboxes from a limited
catalogue of commercially available components are done simultaneously
for all joints of a robotic arm. Characteristics of the motor and gearbox,
including gear ratio, gear inertia, motor inertia, and gear efficiency, are
considered in the drive train modeling. A co-simulation method is developed
for dynamic simulation of the arm. A design example is included to
demonstrate the proposed design optimization method.

3.1 Introduction

The drive train is the core part of a robot system, with significant impact
on the cost and performance of the whole system. To achieve a light-weight
design, drive train optimization plays a key role. A number of methods for
motor and gear selection in mechatronic systems have been proposed. Pasch
and Seering [15] studied maximizing the system acceleration by optimal
selection of transmission ratio. Van De Straete et al. [16, 17] proposed a
general method of motor and gearbox selection for optimization of servo
drive system. The method automates the solution procedure for the servo
drive design problem by virtue of the normalization of torques, velocities,
and transmission ratios. Cetinkunt [40] proposed an optimization approach
of balancing the high speed and precision in servo systems. Cusimano
[41, 42] presented a procedure for optimal selection of an electrical motor
and transmission. Roos et al. [14] proposed a method of finding the best
motor/gear ratio combination for any given load with respect to weight,
size, peak power, torque and efficiency. The methods above are applicable
to the design of a single joint combining a motor and a gearbox, and they
do not address the discrete nature of the selection process.

For design of robotic drive train consisting of multiple joints, the challenge
is that not only the characteristics of motor and gearbox at a single joint,
but also the dynamics of the robot should be taken into account, the latter
varying with the selection of components and link dimensions. Further-
more, the optimization procedure adopted has to be capable of handling
discrete design variables because the transmission is typically composed
of commercially available components. Very few methods are available
for the optimization of the entire drive train of a robot under constraint
of available components. A method for the optimum selection of robot
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actuators was proposed in [18], with objective to minimize the total mass of
all the actuators under torque and temperature constraints. Pettersson and
Ölvander [19] reported recently a method of design optimization, in which
drive train for two joints were optimized for an industrial manipulator. The
method is not applicable to selection of components from a catalogue. An
evolutionary approach of optimization on robot configurations was reported
in [43]. A simulation environment called Modelica with robot optimization
characteristic was presented in [20], where the parameters of a controller
can be tuned by a multi-criteria parameter optimization method to improve
the system dynamics. DLR’s 7-dof (degrees of freedom) torque-controlled
light-weight robotic arm was built with customized motors and gearboxes to
achieve a low weight [4]. Methods of robot optimization can also be found
in [22, 44, 45], among others.

In this paper, an optimization method for drive train design of a light-weight
robotic arm is proposed. The method is applicable to serial robotic arms,
aiming at minimizing the arm weight. In the method, the optimization is
carried out with a prescribed trajectory of the end-effector, generated within
the robotic arm’s workspace. Moreover, the inverse kinematic analysis was
conducted in ADAMS to verify the trajectory is within the joint space. A
dynamic model of the robotic arm is developed, upon which an optimization
problem is formulated. A non-gradient optimization method, namely,
the Complex [31], is implemented to run the optimization. The method
is implemented on a co-simulation platform, where robotic dynamics
is determined using MSC.ADAMSTM, and the complex optimization is
performed in MatlabTM.

3.2 Conceptual design of a robotic arm

The light-weight robotic arm considered in this paper has five degrees of
freedom (dof), with two dof at the shoulder, one at the elbow, and two at
the wrist, as depicted in Fig. 3.1. The arm is designed for assisting elderly
and handicapped people in daily living [46]. Light-weight design of such
robotic arms is required for safety and energy efficiency.

In this design, harmonic drives are used as gearing elements. The motors
and harmonic drive gearboxes are mounted inside the joints, while the axes
of rotation coincide with the joint axes. The physical realization of Joint 2
is illustrated in Fig. 3.2. The same conceptual design is used for all 5 joints.

While the topology of the individual transmission is fixed, the motors
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Figure 3.1: A 5-dof light-weight robotic arm.
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Fixed part (fixed to hub) 

of Harmonic Drive
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Figure 3.2: Joint mechanism for Joint 2, (a) 3D view, (b) section view.

can be chosen from either permanent magnet DC motors or brushless DC
motors. MaxonTM motors are used in this study. The gearboxes are limited
to Harmonic DriveTM backlash-free coaxial gears. Both components are
considered appropriate for implementing the proposed design optimization
method, that may easily accommodate a wider variety of gearboxes and
motors. The arm structures are made of aluminium.
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3.3 Kinematics and dynamics
3.3.1 Kinematics

The forward kinematics of the robotic arm is formulated based on the
Denavit-Hartenberg convention [38]. A Cartesian coordinate system is
attached to each link of the robotic arm, as shown in Figure 3.3. D-H
parameters are defined as listed in Table 3.1. The detailed solution of the
forward kinematics can be found in Appendix 1.

Figure 3.3: Robotic arm coordinate system.

For given locations of the end-effector, the joint variables are found by
inverse kinematics. The method presented in [39] was adopted for this
purpose. The detailed solution of the inverse kinematics can be found in
Appendix 2.

3.3.2 Inverse dynamics

The computation of the inverse dynamics is a prerequisite for evaluating
any given design with given load and prescribed trajectory. Here we briefly
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Table 3.1: D-H Parameters of the Robotic Arm.

Joint i αi ai di θi
1 π/2 0 h1 θ1

2 0 l1 0 θ2

3 π/2 0 0 θ3

4 −π/2 0 l2 θ4

5 π/2 0 d1 θ5

recall the Lagrange-Euler formulation, which is

d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
= τi; i = 1, . . . , 5 (3.1)

where the Lagrangian L = K − U =
∑5

i=1(Ki − Ui). For the ith link, the
kinetic energy Ki and the potential energy Ui are given by

Ki =
1

2
miv

T
civci +

1

2
ωTi Iiωi; Ui = mig

Tpci (3.2)

where vci denotes the linear velocity of the center of mass for link i, ωi is
the angular velocity of the same link, and Ii is the inertia matrix of link i
with respect to its center of mass. Moreover, pci is the position vector of
the center of mass for link i, measured in the reference coordinate system.

Substituting Eq. (3.2) into (3.1) produces equations of motion as

M(θi)θ̈i + v(θi, θ̇i) + ξ(θi) = τ (3.3)

where M is the mass matrix, v is the vector of Coriolis and centrifugal
terms of the links, ξ is the vector of gravitational forces, and τ is the vector
of joint torques.

Equation (3.3) can be solved with different approaches [47, 48]. In
this work, the dynamics solutions are found through ADAMS, which
directly takes advantage of the accurate geometry and mass property of
a CAD embodiment for computations. In the meantime, a Matlab solver
adopted the recursive approach [49] was also developed for the purpose of
comparison, which is discussed in Section 3.6.
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3.3.3 Drive train modeling

Equation (3.3) yields the required joint torque τ(t), if the motion is
prescribed. The motor torque for each joint can further be determined,
as seen in Fig. 3.4. For the harmonic drive gearbox, the gear efficiency
varies depending on the output torque. With the inertia of motor and gear,
the required motor torque for the ith joint is derived as

 m

Jm

Jg

Motor

Gearbox

Link

 
g

 

mm

mg

  
. ..
 (t)

Figure 3.4: Schematic view of drive train model for a single joint.

τm,i =

{
(Jm + Jg)θ̈(t)ρ+

τ(t)

ρηg

}
i

; i = 1, . . . , 5 (3.4)

where ρi is the gear ratio, Jg,i is the gear inertia with respect to the input
motor axis, Jm,i is the motor inertia, and ηg,i is the gear efficiency .

3.4 Formulation of design problems

The criteria for selecting motor and gearbox are applicable to each single
joint, thus subscript ‘i’ is omitted in this section for clarity.

3.4.1 Motor selection criteria

Motors for robotic arms are usually selected from two motor groups,
brushed and brushless DC motors. In selecting motors, the following three
constraints must not be violated:

Nominal torque limit. The nominal torque is the so-called maximum
continuous torque. The root mean square (RMS) value τrms of the required
motor torque τm has to be smaller than or equal to the nominal torque of
the motor Tm

τrms ≤ Tm (3.5)
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where τrms =
√

1
∆t

∫ ∆t
0 τ2

mdt, with ∆t being the duration of a characteristic
working cycle.

Stall torque limit. The stall torque is the peak torque of the motor. The
required peak torque τp has to be smaller than or equal to the stall torque
Tmaxm of the motor

τp ≤ Tmaxm (3.6)
where τp = max{|τm|}.

Maximum permissible speed limit. The maximum permissible speed
for DC motors is primarily limited by the commutation system. A further
reason for limiting the speed is the rotor’s residual mechanical imbalance
which shortens the service life of the bearings. The required peak speed np
corresponding to the motor has to be smaller than or equal to the maximum
permissible speed Nmax

m of the motor

np ≤ Nmax
m (3.7)

where np = max{|2πθ̇(t) · ρ|}.

The inequalities (3.5) to (3.7) represent the constraints that must be fulfilled
by any motor in the drive train.

3.4.2 Gearbox selection criteria

In the selection of gearboxes, the following three constraints are considered:

Rated output torque limit. It is recommended by the Harmonic Drive
gearbox manufacturer to use the RMC value for calculating rated torque
[50]. The RMC value is a measure of the accumulated fatigue on a structural
component and reflects typical endurance curves of steel and aluminium [51].
It is therefore relevant to gearbox lifetime, and this criterion has also been
used in robotic applications [52]. With this criterion, a constraint is derived
as

τrmc ≤ Tg (3.8)

where τrmc = 3

√
1

∆t

∫ ∆t
0 τ3(t)dt, with τ(t) being the required torque from

the gearbox output. Tg is the limit for rated torque of the gearbox.

Maximum output torque limit. The required peak torque τg with
respect to the output side has to be smaller than or equal to the allowable
peak torque Tmaxg of the harmonic drive

τg ≤ Tmaxg (3.9)
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where τg = max{|τ(t)|}.

Maximum permissible input speed limit. The required maximum
input peak speed nin has to be smaller than or equal to the maximum
permissible input speed Nmax

g of a gearbox

nin ≤ Nmax
g (3.10)

where nin = max{|θ̇(t) · ρ|}.

The inequalities (3.8) to (3.10) represent the constraints that must be
fulfilled by any gearbox in the drive train.

Although the inequalities (3.5) to (3.10) are derived specifically from the
selection criteria for the motors and gearboxes considered in this paper,
they are quite general, and would be recognized in any selection procedure
for motors and gearboxes suitable for robotic arm design.

3.4.3 Objective function formulation

The objective of the optimization is to minimize the mass of the robotic arm.
In this formulation, we minimize only the mass of the power transmission,
while the mass of the arm structures (marm) remains constant. Therefore,
the optimization task is to find the lightest combination of motor and
gearbox for all five dof that fulfill all constraints associated with the motors
and gearboxes. The objective function, f(x), is defined as the sum of the
mass of the motors and gears, as shown in Equation (3.11a).

min
x

f(x) =

5∑
i=1

{mm(um) +mg(ug)}i (3.11a)

x = [um,ug]

S.T.

Tm,i ≥

√
1

∆t

∫ ∆t

0

{
(Jm(x) + Jg(x)) θ̈(t)ρ+

τ(t,x)

ρηg

}2

i

· dt (3.11b)

Tmaxm,i ≥ max

{∣∣∣∣(Jm(x) + Jg(x))θ̈(t)ρ+
τ(t,x)

ρηg

∣∣∣∣}
i

(3.11c)
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Nmax
m,i ≥ max

{
|2πθ̇(t) · ρ|

}
i

(3.11d)

Tg,i ≥
3

√
1

∆t

∫ ∆t

0
τ3
i (t,x) · dt (3.11e)

Tmaxg,i ≥ max {|τ(t,x)|}i (3.11f)

Nmax
g,i ≥ max

{
|θ̇(t) · ρ|

}
i

(3.11g)

where design variables in x includes the index numbers of motors um =
[um1, . . . , um5] and gearboxes ug = [ug1, . . . , ug5], relative to databases
containing commercially available components.

So far, we have formulated the design problem as a discrete optimization
problem, which can be solved by commercial available codes. We select a
non-gradient method called Complex for this purpose. The implementation
is outlined in the next section.

3.5 Procedure of optimization

The optimization method is developed as a Matlab and MSC.ADAMS co-
simulation platform. The optimization algorithm is based on the Complex
method, which is briefly discussed.

3.5.1 Optimization by Complex

The Complex method is a non-gradient based optimization method, first
presented by Box [31].

In the Complex method, several possible designs (design population) are
manipulated. The method is based on a feasible domain, containing
a design population as a set of design points. The number of design
points has to be greater than the number of independent design variables.
The starting design points (initial population) are randomly generated,
and evaluated through the objective function to check performance and
constraint violation. Among all populations, the set of design variables
having the minimal objective function is denoted as the best point xb, while
the one having the maximal objective function is denoted as the worst point
xw. Their corresponding values of objective function are noted as the best
and worst values. The centroid point is calculated as

xc =
1

m− 1

m∑
i=1

xi, xi 6= xb (3.12)
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xi = [x1, x2, . . . , xn], m > n (3.13)

The main idea of the Complex method is to replace the worst point by
a new and better point. The new point is found by the reflection of the
worst point through the centroid with a reflection coefficient α, yielding the
following expression for the new design point

xcand = xc + α(xc − xw) (3.14)

The coefficient α = 1.3 is used in this study, as recommended in [31]. The
candidate point xcand is checked through explicit and implicit constraints.
When it conforms to the constraints, xcand replaces xw. This method cannot
handle the situation when the centroid is trapped in a local minimum.
Therefore, the method has been modified such that the point moves toward
the best point if it continues to be the worst one. To avoid the collapse of
the algorithm, a random value is also added to the new point. The modified
method to calculate the reflection point is given as

xnewcand =
1

2

(
xoldcand + εxc + (1− ε)xb

)
+ (xc − xb)(1− ε)(2k − 1) (3.15)

where k is a random number varying in the interval [0, 1], with

ε =

(
nr

nr + kr − 1

)nr+kr−1
nr

(3.16)

Here kr is the number of times the same point has repeatedly been identified
as the worst point, and nr is a tuning parameter which is set to 4. The
convergence criterion of the Complex method in this work is the difference
between the best and worst objective function values is less than a user
defined tolerance.

3.5.2 Dynamics model with MSC.ADAMS

The drive requirements of the whole robotic arm system are determined
from inverse kinematic and dynamic analysis within MSC.ADAMS. The
inverse kinematic and dynamic analysis is developed as a simulation
package, which will be called by the optimization program. To this end, the
mass of motors and gearboxes are parameterized, while the trajectory of the
robotic arm is prescribed. For each variation of motors and gearboxes, the
required motor torques are accurately calculated. The mass of distribution
is updated during the optimization procedure.
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The inverse kinematic and dynamic analysis of the robotic arm in ADAMS
follows a so-called master-slave approach, as shown in Fig. 3.5. The basic
concept of this approach is that we make two models of the robotic arm in
ADAMS, a master model and a slave one. In the master model, the inverse
kinematic analysis is executed to record the joint motions corresponding to
the prescribed end-effector trajectory. In the slave model, the joint motion
data is imported and imposed on the joints, and payload is also attached
to the end-effector. Then the inverse dynamic calculation is performed to
solve the required joint torques for actuating the robotic arm.

End_effector

Trajectory
Payload

Master model 

in ADAMS

Inverse 

kinematic

analysis

Solved joint 

motions

Slave model 

in ADAMS

Inverse 

dynamic

analysis

Solved joint 

torques

Master model Slave model

Figure 3.5: The procedure of inverse kinematic and dynamic analysis.

In the master-slave approach, we can define different trajectories and
payloads for the robotic arm model, which makes the model more flexible
for different simulation conditions. This approach can be applicable to other
serial and parallel robot systems.

3.5.3 Matlab-ADAMS co-simulation platform

The design optimization is mainly concerned of two tasks: the optimization
routine and creation of a parametric dynamic simulation model. Both tasks
can be performed on a Matlab-ADAMS co-simulation platform developed in
this work. As shown in Fig. 3.6, the platform works with two modules. The
ADAMS module is used to simulate the inverse kinematics and dynamics
of the robotic arm. The Matlab module implements the Complex method
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Figure 3.6: Diagram of the optimization routine in the co-simulation platform.

3.6 An example of design optimization

Design optimization was conducted on the 5-dof light-weight robotic arm.
The link lengths of the robotic arm are fixed. The trajectory of the
end-effector in the base coordinate system is defined as Xef (t) = 50 +
400(1 − cos(t)), Yef (t) = −1000 + 800(1 − cos(t/2)), and Zef (t) = 280 +
250(cos(t/2) − 1), all with unit of mm. The corresponding velocity and
acceleration profiles of the trajectory are depicted in Fig. 3.7. The Euler
angles for the end-effector are given as [sin(t/180), 0, 0], which implies the
end-effector remains horizontal during the prescribed motion. The motion
of the end-effector is illustrated in Fig. 3.8.
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Figure 3.7: Velocity and acceleration of the end-effector trajectory.
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Figure 3.8: Illustration of a prescribed end-effector motion.

The payload is defined as a point of mass in ADAMS and weights 2kg. On
the other hand, the mass of motors and gearbox are determined from their
indices selected. The solved motions of each joint, as shown in Fig. 3.9 for
Joint 1, are imported into ADAMS to generate arm dynamics.

Ten candidate motors from the Maxon Motor catalogue are arranged
ascendingly with respect to the mass of motor, as shown in Table 3.2.

The gearboxes used in the robotic arm are selected from Harmonic Drive
CPU units, as listed in Table 3.3. For the Harmonic Drive gearboxes, the
efficiency is a function of operation speed. In this paper, the gear efficiency
is set as ηg = 0.85 for all gearboxes, for simplicity.
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Figure 3.9: Velocity and acceleration of the 1st joint.

Table 3.2: Candidate motor data from Maxon Motor [53].

Index Maxon Tm Tmaxm Nmax
m Jm mm

No. Motor [Nm] [Nm] [rpm] [g · cm2] [kg]
1 EC 45 flat 0.0843 0.822 10000 135 0.11
2 RE 25 0.0284 0.28 14000 10.5 0.13
3 RE 26 0.0321 0.227 14000 12.1 0.15
4 EC-i 40 0.0667 1.81 15000 24.2 0.21
5 RE 30 0.0882 1.02 12000 34.5 0.238
6 EC 32 0.0426 0.353 25000 20 0.27
7 RE 35 0.0965 0.967 12000 67.4 0.34
8 RE 36 0.0795 0.785 12000 67.2 0.35
9 EC 40 0.127 0.94 18000 85 0.39
10 RE 40 0.184 2.5 12000 138 0.48

Table 3.3: Candidate gearbox data from Harmonic Drive [54].

Index CPU Unit Ratio Tg Tmaxg Nmax
g Jg mg

No. Size [Nm] [Nm] [rpm] [kg ·m2] [kg]
1 14 100 11 54 8500 0.033× 10−4 0.54
2 17 100 39 110 7300 0.079× 10−4 0.79
3 20 100 49 147 6500 0.193× 10−4 1.3
4 25 100 108 284 5600 0.413× 10−4 1.95

In order to simplify the process of selecting motors and gearboxes, the gear
ratio of each joint is fixed as ρ = [344, 444, 100, 51, 100], orderly from Joints
1 to 5. The gear ratio is based on previous investigation of joint torques. The
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ratios ρ1 and ρ2 are combinations of two gearboxes, a planetary gearhead
and a Harmonic Drive unit, to achieve high gear ratio. For simplicity, the
mass of the planetary gearhead is fixed, while only the mass of the Harmonic
Drive gearbox is manipulated.

The gearbox is selected for each joint, associated with the selection of motor.
The Harmonic Drive CPU unit is used in all joints except Joint 4, due to
the joint structure consideration. A planetary gearhead is used in Joint 4,
so ug4 = 0.

3.6.1 Optimization results

An optimized design of motor and gearbox for the robotic arm was found,
as listed in Table 3.4. The optimized weight of the robotic arm is 10.2 kg,
with a reduction of 38% corresponding to the initial combination of motors
and gearboxes.

Table 3.4: Optimization results for minimization of weight.

Joint Initial Optimized
Motor Gearbox Motor Gearbox

1 RE 40 CPU 17 EC 40 CPU 17
2 RE 35 CPU 17 EC 45 flat CPU 17
3 RE 35 CPU 17 EC-i 40 CPU 14
4 RE 35 Gearhead EC 45 flat Gearhead
5 RE 35 CPU 17 EC 45 flat CPU 14

Arm weight[kg] 16.7 10.2

The convergence of the objective function is depicted in Fig. 3.10, where
both the best and the worst objective function values from the Complex
algorithm are displayed. The solution to the optimal result is achieved after
3160 iterations with a population size of 140. In this work, the tolerance of
convergence criterion is set to 0.0001. It is noted from Fig. 3.10 that at the
1500th iteration, the difference between the best and the worst f(x) values
is 0.03, which means the convergence criterion is not met at that point, even
though two values appear to be very closer.

Figure 3.11(a) illustrates the convergence of the motor design variables.
Note that only convergence curves for Joints 1 and 5 are displayed for clarity.
The convergence of the gearbox design variables is depicted in Fig. 3.11(b).
Comparing the convergence rate for the motor and gearbox design variables,
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Figure 3.10: Convergence plot for the weight of the robotic arm.

the gearbox design variables converge faster than the motor design variables.
A possible explanation is the mass difference between the Harmonic Drive
units is larger than that between the motors.
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Figure 3.11: Convergence plots for design variables.

Based on the optimization results, the motor torques are obtained for Joints
1, 2, 3 and 5, as shown in Fig. 3.12, where torques for initial designs are
also displayed for comparison. It is seen that the optimal design reduces
the peak torque by 31.8% reduction for Joint 1 and by 40% for Joint 2.

To verify the accuracy of the solved joint torques from the co-simulation
platform, another program was developed for simulation with Matlab only.
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Figure 3.12: Motor torques for initial and optimal drive train combinations.

The joint torques obtained with the two methods are shown in Fig. 3.13
for the the same robot trajectory. Higher torques calculated by the co-
simulation platform were observed for both Joints 1 and 2. The reason
is that ADAMS in the co-simulation platform can calculate torques with
more precise mass distribution, while the Matlab solver calculates the mass
matrices using simple and regular geometry of links. The difference in mass
matrices is demonstrated in Eq. (3.17) for Link 2, where I′2 is calculated by
the Matlab solver and I2 is by ADAMS.
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Figure 3.13: Comparisons of joint torques solved by the co-simulation platform
and a Matlab solver.

I′2 =

[
0.0076 0 0

0 0.0076 0
0 0 0.0045

]
[kg·m2], I2 =

[
0.008 −0.00032 −0.00008

−0.00032 0.0069 0.00037
−0.00008 0.00037 0.0049

]
[kg·m2]

(3.17)

3.6.2 Design variables programming

The design points in the Complex method are usually continuous. But
the design variables um,i and ug,i have to be integers, since they are the
index numbers from the databases of motors and gearboxes. Two ways of
dealing with the design variables are investigated in order to confirm a more
efficient one. One way is called Rounded Design Variable (RDV), the other
one called Linear Design Variable (LDV).

Rounded Design Variable (RDV) For the RDV method, a rounding
function is introduced to transfer the design variables into integers. The
rounding function is given as

xDV = round(x) =

{
xint; if xint ≤ x < xint + 0.5

xint + 1; if xint + 0.5 ≤ x < xint + 1
(3.18)

where x is the design variable manipulated by the Complex method, xint is
the integral part of the number x, and xDV is the rounded design variable.
xDV is used to update the mass of motors and gearboxes in inverse dynamic
analysis, as well as the allowable torque and speed values used to examine
constraint violations.
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Linear Design Variable (LDV) For the LDV method, the mass
between two adjacent motors (or gearboxes) in the category is linearized
by the function

m(x) = m(xint) + (x− xint) · [m(xint + 1)−m(xint)] (3.19)

where m(xint) is the mass of the component (motors from Table 3.2 and
gearboxes from Table 3.3) corresponding to the index number xint, m(x) is
the mass to be updated for the component in inverse dynamic analysis.

Comparison has been conducted upon the RDV and LDV methods of
dealing with the integer design variables, as listed in Table 3.5. In general,
the LDV method yields better results at the cost of more iterations and
objective function evaluations. In the above example, the RDV method
has been preferred, however, the choice of method must in general be a
compromise between accuracy and optimization time.

Table 3.5: The comparisons of RDV and LDV.

Population RDV LDV
f(x) Iteration f(x) Iteration

20 11.142 213 10.633 1499
40 10.952 927 10.703 2607
60 10.458 1444 10.414 6303
80 10.402 3026 10.122 7306

3.7 Conclusions

Amethod was developed for the optimum design of robotic drive trains. The
selection of motors and gears is formulated as a discrete optimization prob-
lem, which is solved by a non-gradient optimization algorithm. Constraints
were formulated by considering both motor and gearbox characteristics and
robotic arm dynamics. The proposed method is able to reach a design
with lower mass for a given set of driving components. A co-simulation
platform consisting of a MSC.ADAMS dynamics model and an optimization
algorithm implemented in Matlab code was developed, which enables design
optimization based on dynamics of an embodiment existing in CAD systems.
Such a platform not only yields accurate dynamic calculation for drive train
optimization, but also leads to a possible integrated optimization for both
arm structures and drive trains.
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Appendix 1

The transformation matrix in forward kinematics of the end-effector in fixed
reference frame is given as:

0A5 =

[
R q
0 1

]
(3.20)

with the rotation matrix R and position vector q being given by

R =

 ux vx wx
uy vy wy
uz vz wz

 , q =

 qx
qy
qz

 (3.21)

The forward kinematics of the robotic arm is solved as below:
ux = cθ5(sθ1sθ4 + cθ1cθ23cθ4)− cθ1sθ23sθ5,
uy = −cθ5(cθ1sθ4 − sθ1cθ23cθ4)− sθ1sθ23sθ5,
uz = cθ23sθ5 + sθ23cθ4cθ5,
vx = sθ1cθ4 − cθ1cθ23sθ4,
vy = −sθ1cθ23sθ4 − cθ1cθ4,
vz = −sθ23sθ4,
wx = sθ5(sθ1sθ4 + cθ1cθ23cθ4) + cθ1sθ23cθ5,
wy = −sθ5(cθ1sθ4 − sθ1cθ23cθ4) + sθ1sθ23cθ5,
wz = sθ23cθ4sθ5 − cθ23cθ5,
qx = l1cθ1cθ2 + l2cθ1sθ23 + d1 · (sθ1cθ4 − cθ1cθ23sθ4),
qy = l1sθ1cθ2 + l2sθ1sθ23 − d1 · (cθ1cθ4 + sθ1cθ23sθ4),
qz = h1 + l1sθ2 − l2cθ23 − d1sθ23sθ4,

where cθ23 stands for cos(θ2 + θ3), and sθ23 for sin(θ2 + θ3).

Appendix 2

The joint angles for a given pose in terms of R and q can be found through
the inverse kinematics presented below.

Skipping details, a solution for θ1 is found as

θ1 = arctan

(
py
px

)
(3.22)

where px = qx − d1wx and py = qy − d1wy. Equation (3.22) leads to two
solutions of θ1, i.e. θ1 = θ∗1 and θ1 = θ∗1 + π, where 0 ≤ θ∗1 ≤ π. They
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represent two branches of arm kinematics. The real value depends on the
initial configuration.

The solution of θ3 is given as

θ3 = arctan

± κ3 − κ1√
κ2

2 − (κ3 − κ1)2

 ; κ2
2 − (κ3 − κ1)2 > 0 (3.23)

where κ1 = l21 +l22, κ2 = 2l1l2, κ3 = p2
x+p2

y+(pz − h1)2, and pz = qz−d1wz.

Once θ1 and θ3 are known, θ2 can be obtained as

θ2 = arctan
(µ2η1 − µ1η2)(ζ2µ1 − ζ1µ2)

(µ2ζ1 − µ1ζ2)(ζ2η1 − ζ1η2)
(3.24)

where
µ1 = l1 + l2sθ3, ζ1 = l2cθ3, η1 = pxcθ1 + pysθ1;

µ2 = −l2cθ3, ζ2 = l1 + l2sθ3, η2 = pz − h1.

θ5 takes the form of

θ5 = arccos (wxcθ1sθ23 + wysθ1sθ23 − wzcθ23) (3.25)

Assuming that sθ5 6= 0, we can solve for θ4 as follows.

θ4 = arctan (sθ4, cθ4) (3.26)

where

cθ4 =
wxcθ1cθ23 + wysθ1cθ23 + wzsθ23

sθ5
; sθ4 =

wxsθ1 − wycθ1

sθ5
.
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Abstract

An approach to minimize the mass of robotic manipulators is developed by
integrated dimensional and drive-train optimization. The method addresses
the influences of dimensions and characteristics of drive-trains in the
design optimization. Constraints are formulated on the basis of kinematic
performance and dynamic requirements, whereas the main objective is to
minimize the total mass. Case studies are included to demonstrate the
application of the optimization method in the design of assistive robots.

4.1 Introduction

Assistive robotic systems consisting of a robot arm mounting on a moving
platform become increasingly important in assisting the handicapped and
elderly people. Typical systems reported include FRIEND-I and FRIEND-
II [1] from University of Bremen, KARES II [2], and RAPTOR [3]. For
such systems, light-weight arms with high payload capacity are desirable
from the point of view of both safety and energy efficiency. Specifically, it
is desired that injuries caused by collision between robotic components and
human beings are minimized in case of accidents.

The design of a light and strong robotic arm faces many challenges, varying
from power supply, actuators, power transmission and structural parts. New
technologies have been developed in connection with some novel robotic
arms. DLR’s robotics lab designed a 7-dof (degrees of freedom) torque-
controlled light-weight robotic arm with a payload-to-weight ratio of 1 and
a payload mass of 14kg using customer designed drive-trains and carbon
fiber structures [4]. Jardon et al. [6] built a 5-dof self-containing light-weight
manipulator with a portable concept from wheelchair to docking stations
in the room. Ananiev et al. [9] designed a 6-dof light-weight reconfigurable
robotic arm mounted on a mobile platform. The 7-dof light-weight Whole
ArmManipulator (WAM) developed by Barrett Technology takes advantage
of differential mechanisms driven by cables and cylinder transmissions to
reduce the effective arm inertia [8].

It is realized that the mass of an arm comes mainly from the structural parts
and the drive-trains. A majority of research work in design optimization
is related to the drive-train design. An early attempt on drive-train design
optimization can be found in [18], in which Chedmail and Gautier proposed
a method for the optimum selection of robot actuators to minimize the
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total mass of all the actuators. Pettersson and Ölvander [19] reported a
method of design optimization, in which the drive-train of two joints was
optimized for an industrial manipulator. A simulation environment called
Modelica with robot optimization facilities was presented in [20], where
the parameters of a controller were tuned by a multi-criteria parameter
optimization method to improve the system dynamics. A drive-train
optimization for robot designing was recently reported in [55]. The method
is able to optimally select combinations of motors and gearboxes from a
catalogue of commercially available components for each dof of a robot
arm. On the other hand, dimensional optimization was also studied for the
improvement of robotic performance, either kinematic or dynamic one. An
optimum robot design method based on a specified task was proposed [25],
in which dimensions were optimized based on dynamic analysis. A method
to find optimal manipulator parameters using evolutionary optimization
algorithms was presented in [24]. Methods based on optimal dynamic
performance were reported in [21, 22, 26, 27], among others, in which
the influence of dimensions of robotic manipulators was rarely considered.
It can be noticed that for most researches, dimensional and drive-train
optimizations were conducted separately. An integrated approach is desired
in order to fully utilize the potential of applying optimization techniques to
robot design.

This paper reports an integrated dimensional and drive-train optimization
method for the design of robotic manipulators. Our interest is to include
the dimensions of a robotic arm as variables in the design optimization,
in addition to the parameters of the drive-trains. The inclusion of the
dimensions in the optimization will allow us to account for their influence
on the kinematic and dynamic performances, both being major concerns in
the robot design. The work in this paper was carried out for a light-weight
robotic arm of five degrees of freedom (dof), with two dof at the shoulder,
one at the elbow, and two at the wrist, as shown in Fig. 4.1(a). This is a
human-like arm design, which is to be mounted on an electric wheelchair
to assist disabled people in simple manipulations like picking, placing, door
opening, etc. For this purpose, a gripper is employed at the end of the arm,
as demonstrated in Fig. 4.1(b). A design with minimal mass can make the
robot intrinsically safe in assistive manipulations.
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Figure 4.1: (a) CAD rendering of a 5-dof light-weight anthropomorphic arm, (b)
control system of the robotic arm.

4.2 The anthropomorphic arm and modeling

The 5-dof robotic arm adopts a modular approach. As shown in Fig. 4.1(a),
CPU series gearboxes of Harmonic DriveTM are used as transmission elements
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and, simultaneously, as the mechanical joints, for different dofs. To increase
the torque capabilities of Joints 1, 2 and 3, a second stage of gearhead is used
between Harmonic Drive and the motor. The geared motors and Harmonic
Drive gearboxes are mounted inside the joint housings, while the axes of
rotation coincide with the joint axes, as illustrated in Fig. 4.1(a). The arm
joints are driven by electrical motors, chosen among MaxonTM DC motors.
The motors are equipped with encoders having 1000 counts per turn.

CANopen (Controller Area Network) bus is adopted for the communications
between motors and controllers. As shown in Fig. 4.1(b), the motors are
controlled by EPOS controllers, which are selected from Maxon. The grip-
per, selected from SOMMERTM Automatic, is controlled by its customized
controller. CAN runs a two-wire differential serial communication protocol,
the CANopen protocol, for real-time control. CANopen protocol uses the
CAN Physical Layer as defined by the CAN in Automation (CiA) standard
‘DS-301 Version 4.02’. The communications between CANopen bus and the
PC are accomplished by a CAN-USB interface.

4.2.1 Kinematics

Following the Denavit-Hartenberg (D-H) convention [38], Cartesian coordi-
nate systems are established for each link of the robotic arm, as shown in
Figure 4.2. D-H parameters are defined as listed in Table 4.1.

Figure 4.2: Robotic arm coordinate systems.
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Table 4.1: D-H parameters of the robotic arm.

Joint i αi ai di θi
1 π/2 0 h1 θ1

2 0 l1 0 θ2

3 π/2 0 0 θ3

4 −π/2 0 l2 θ4

5 π/2 0 d1 θ5

The transformation matrix in forward kinematics of the end-effector in fixed
reference frame is given as

0A5 =

[
R q
0 1

]
(4.1)

with the rotation matrix R and position vector q given by

R =

 ux vx wx
uy vy wy
uz vz wz

 , q =

 qx
qy
qz

 (4.2)

The joint angles for a given pose in terms of R and q can be found through
the inverse kinematics. For simplicity, only solutions of the five joint angles
are presented, which are

θ1 = arctan

(
py
px

)
, 0 ≤ θ1 ≤ π (4.3a)

θ3 = arctan (sθ3, cθ3) (4.3b)

where
px = qx − d1wx, py = qy − d1wy, pz = qz − d1wz

κ1 = l21 + l22, κ2 = 2l1l2, κ
2
2 − (κ3 − κ1)2 > 0

κ3 = p2
x + p2

y + (pz − h1)2

sθ3 = (κ3 − κ1)/κ2, cθ3 =

√
1− ((κ3 − κ1)/κ2)2
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Upon solved θ1 and θ3, other joint angles are obtained as

θ2 = arctan
(µ2η1 − µ1η2)(ζ2µ1 − ζ1µ2)

(µ2ζ1 − µ1ζ2)(ζ2η1 − ζ1η2)
, 0 ≤ θ2 ≤ π (4.3c)

θ5 = arccos (wxcθ1sθ23 + wysθ1sθ23 − wzcθ23), 0 < θ5 < π (4.3d)
θ4 = arctan (sθ4, cθ4) (4.3e)

with
µ1 = l1 + l2sθ3, ζ1 = l2cθ3, η1 = pxcθ1 + pysθ1

µ2 = −l2cθ3, ζ2 = l1 + l2sθ3, η2 = pz − h1

cθ4 =
wxcθ1cθ23 + wysθ1cθ23 + wzsθ23

sθ5

sθ4 =
wxsθ1 − wycθ1

sθ5
, sθ5 6= 0

where c and s stand for harmonic functions cosine and sine, respectively.
Moreover θ23 ≡ θ2 + θ3.

4.2.2 Jacobian matrix

The joint angular velocity can be calculated with the Jacobian matrix

θ̇ = J−1vef (4.4)

where θ̇ = [θ̇1, θ̇2, . . . , θ̇n]T denotes an n-dimensional (n denotes the number
of dof) vector of the joint angular velocities, J is the Jacobian of the robotic
arm, and vef the velocity of the end-effector.

For a revolute joint, the Jacobian matrix can be calculated by [39]

J = [j1, j2, . . . , jn] , ji =

[
zi−1 × pi−1

zi−1

]
(4.5)

where zi−1 and pi−1 are given by

zi−1 = Ri−1 [0 0 1]T , pi−1 = Ri−1qi−1 + pi (4.6)

where qi−1 = [ai cos θi, ai sin θi, di]
T, Ri−1 denotes the rotation matrix from

the reference coordinate system to the (i − 1)th coordinate system. The
local coordinates of the end-effector are defined as pn = [0, 0, 0]T. When
the desired end-effector velocity vef is given, the joint angular velocity can
be solved by Eq. (4.4).
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4.2.3 Inverse dynamics

The integrated dimensional and drive-train optimization will make use of a
dynamic model of the robotic arm for dynamic evaluations. The governing
equation of the arm motion can be written as

M(θ)θ̈ + V(θ, θ̇) + G(θ) = τ (4.7)

where M is the mass matrix, V is the vector of Coriolis and centrifugal
terms of the links, G is the vector of gravitational forces, τ is the vector of
joint torques, and θ is the vector of joint angles.

The mass matrix M can be calculated as

M =
n∑
i=1

(JT
v,imiJv,i + JT

ω,iIiJω,i), Ji =

[
Jv,i
Jω,i

]
(4.8)

where Jv,i and Jω,i are 3 × n matrices. For revolute joint, the jth column
vectors of Jv,i and Jω,i can be obtained by [39]

jjv,i = zj−1 × pj−1
c,i , j

j
ω,i = zj−1, for j ≤ i (4.9a)

jjv,i = jjω,i = [0 0 0]T , for i < j ≤ n (4.9b)

where pj−1
c,i is a position vector defined from the origin of the j−1 link frame

to the center of mass of link i and expressed in the base frame. Moreover,
mi and Ii are the mass and the inertia matrix of the link i. For each link,
its mass is found as

mi = ms,i +mm,i +mg,i (4.10)

where ms,i is the mass of the arm structure, which is proportional to the
link length. mm,i and mg,i are the masses of motor and gearbox for the ith
joint. Both mi and Ii vary with the selections of motors and gearboxes, and
the link lengths as well.

4.3 Integrated dimensional and drive-train optimization

The integrated dimensional and drive-train optimization is proposed to min-
imize the mass of the robotic arm with constraints on kinematic performance
and the robotic dynamics. The selection of motor and gearbox for a drive-
train is constrained through the dynamic requirements and the selecting
criteria for motors and gearboxes. Since the geometric dimensions1 influence

1Geometric dimensions in this work refer to the link lengths of the robotic arm’s D-H
parameters, namely, l1 and l2.



60 4.3. Integrated dimensional and drive-train optimization

the robotic dynamics, and also determine the kinematic performance of the
robotic manipulator; a constraint on the kinematic performance can be
defined to account for the dimensions’ influence.

With the objective to minimize the mass of the robotic arm, the optimiza-
tion task is to find the lightest combination of motor and gearbox for all the
joints and the optimal link lengths that fulfill all constraints associated with
the kinematic performance, the motors and gearboxes. The optimization
problem is defined as

Minimize f(x) =

n∑
i=1

{mm(um) +mg(ug)}i (4.11a)

x = [um,ug,ud]

subject to gj(x) ≤ 0 (4.11b)

where f(x) is the total mass of the robotic arm, gj(x) is the set of inequality
constraints. The array of design variable x includes the index numbers of
motors um = [um1, . . . , umn] and gearboxes ug = [ug1, . . . , ugn], relative to
the database containing commercially available components, and an array
of dimensional variables ud.

The set of constraints gj(x) includes the kinematic performance constraint,
the constraints for motor selection, and that for gearbox selection, as
described presently.

4.3.1 Global conditioning index

The kinematic performance is one of the major concerns in robot design.
It is desirable for a robot to have a high kinematic performance, while the
drive-drain being optimized. Several performance indices have been used
in designs of robotic manipulators. Yoshikawa [56] proposed manipulability
measure as a metric of kinematic performance. Gosselin and Angeles [57]
developed a global conditioning index (GCI) for the kinematic optimization
of manipulators. The condition number and dexterity indices of the
manipulator have been adopted in optimum designs [58, 59, 60].

Among the performance indices mentioned, the manipulability measure is
a local performance measure and valid at a certain position only [61]. In
this work, we use a global performance index, the global conditioning index
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(GCI). The GCI is defined over a workspace Ω as [57]

GCI =

∫
Ω

1
κdW∫

Ω dW
(4.12)

with the condition number κ given by

κ =‖ J(θ,ud) ‖‖ J−1(θ,ud) ‖ (4.13)

where J(θ,ud) is the Jacobian matrix defined in Eq. (4.4). The Euclidean
norm ‖ · ‖ of the matrix is defined as

‖ J ‖=
√
tr(JTNJ) (4.14)

with N = 1
nI, where n is the dimension of the square matrix J, and I is the

n× n identity matrix.

In practice, the GCI of a robotic manipulator is calculated through a discrete
approach as [62]

GCI =
1

W

m∑
i=1

1

κi
∆Wi (4.15)

where W is the workspace volume, and m is the number of discrete points.
In the case of equal-volumetric discretization, ∆Wi ≡ ∆W , Eq. (4.15) is
simplified to

GCI =
1

m

m∑
i=1

1

κi
(4.16)

The GCI is dimension dependent, which means

GCI = GCI(ud) (4.17)

To keep a high kinematic performance with selected link lengths in the
integrated optimization, a constraint is given on the GCI

GCI(ud) ≥ Cmin (4.18)

where Cmin is a user-defined minimum acceptable GCI.
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4.3.2 Drive-train modeling

A drive-train normally consists of a motor, a linkage and a gearbox for
speed reduction. The drive-train model of a single robotic joint is shown
in Fig. 4.3. For the Harmonic Drive gearbox, the gear efficiency varies
relative to the output torque. The required motor torque for the ith joint
is calculated by

τm,i =

{
(Jm + Jg)θ̈(t)ρ+

τ(t)

ρηg

}
i

; i = 1, . . . , n, (4.19)

where ρi is the gear ratio, Jm,i is mass moment of inertia of the ith motor,
Jg,i is the equivalent mass moment of inertia of the ith gearbox, ηg,i is the
corresponding gear efficiency, and τi(t) is the load at the output link which
can be solved by Eq. (4.7).

 m

Jm

Jg

Motor

Gearbox

Linkage

 
g

 

 (t)

mm

mg

  
. ..

Figure 4.3: Schematic view of drive-train model for a single joint.

4.3.3 Motor selection criteria

In selecting motors, the following three constraints have to be satisfied,
according to the motor selection criteria recommended by the manufacturer
[53].

Nominal torque limit. The nominal torque is the so-called maximum
continuous torque. The root mean square (RMS) value τrms of the required
motor torque τm has to be smaller than or equal to the nominal torque of
the motor Tm

τrms ≤ Tm (4.20)

where τrms =
√

1
∆t

∫ ∆t
0 τ2

mdt, with ∆t being the duration of a characteristic
working cycle.
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Stall torque limit. The stall torque is the peak torque of the motor. The
required peak torque τp has to be smaller than or equal to the stall torque
Tmaxm of the motor

τp ≤ Tmaxm (4.21)

where τp = max{|τm|}.

Maximum permissible speed limit. The maximum permissible speed
for DC motors is primarily limited by the commutation system. A further
reason for limiting the speed is the rotor’s residual mechanical imbalance
which shortens the service life of the bearings. The required peak speed np
corresponding to the motor has to be smaller than or equal to the maximum
permissible speed Nmax

m of the motor

np ≤ Nmax
m (4.22)

where np = max{|2πθ̇(t) · ρ|}.

4.3.4 Gearbox selection criteria

In the selection of gearboxes, the following three constraints are considered:

Rated output torque limit. It is recommended by the Harmonic Drive
gearbox manufacturer to use the RMC value for calculating rated torque
[50]. The RMC value is a measure of the accumulated fatigue on a structural
component and reflects typical endurance curves of steel and aluminium [51].
It is therefore relevant to gearbox lifetime, and this criterion has also been
used in robotic applications [52]. With this criterion, a constraint is derived
as

τrmc ≤ Tg (4.23)

where τrmc = 3

√
1
∆t

∫ ∆t
0 τ3(t)dt, with τ(t) being the required torque from

the gearbox output. Tg is the limit for rated torque of the gearbox.

Maximum output torque limit. The required peak torque τg with
respect to the output side has to be smaller than or equal to the allowable
peak torque Tmaxg of the harmonic drive

τg ≤ Tmaxg (4.24)

where τg = max{|τ(t)|}.

Maximum permissible input speed limit. The required maximum
input peak speed nin has to be smaller than or equal to the maximum



64 4.3. Integrated dimensional and drive-train optimization

permissible input speed Nmax
g of a gearbox

nin ≤ Nmax
g (4.25)

where nin = max{|θ̇(t) · ρ|}.

4.3.5 Objective function formulation

Substituting Eq. (4.19) into Eqs. (4.20-4.21) and expanding Eqs. (4.22-
4.25) yield the constraints on the motors and gearboxes. The objective
function, f(x), is formulated as

min
x

f(x) =
5∑
i=1

{mm(um) +mg(ug)}i (4.26a)

x = [um,ug,ud]

subject to

Cmin ≤ GCI(ud) (4.26b)

Tm,i ≥

√
1

∆t

∫ ∆t

0

{
(Jm(x) + Jg(x))θ̈(t)ρ+

τ(t,x)

ρηg

}2

i

· dt (4.26c)

Tmaxm,i ≥ max

{∣∣∣∣(Jm(x) + Jg(x))θ̈(t)ρ+
τ(t,x)

ρηg

∣∣∣∣}
i

(4.26d)

Nmax
m,i ≥ max

{
|2πθ̇(t) · ρ|

}
i

(4.26e)

Tg,i ≥
3

√
1

∆t

∫ ∆t

0
τ3
i (t,x) · dt (4.26f)

Tmaxg,i ≥ max {|τ(t,x)|}i (4.26g)

Nmax
g,i ≥ max

{
|θ̇(t) · ρ|

}
i

(4.26h)

where Tm,i, Tmaxm,i , and Nmax
m,i are the nominal torque, stall torque, and

maximum speed of the motor in joint i. Moreover, Tg,i, Tmaxg,i , and Nmax
g,i

are the rated output torque, maximum output torque, and maximum input
speed of the gearbox in joint i. Among these constraints, Eqs. (4.26c-4.26e)
apply to the motor selection, while Eqs. (4.26f-4.26h) are for the gearbox
selection. The kinematic performance is constrained through Eq. (4.26b).
So far, we have formulated the design problem as a discrete optimization
problem, which can be solved by commercial available codes. We select a
non-gradient method called Complex for this purpose. The implementation
is outlined in the next section.
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4.4 Procedure of optimization

After the problem of optimization is formulated, a discrete optimization
algorithm, the Complex method, is used to solve the problem.

4.4.1 Optimization by the Complex method

The Complex method is a non-gradient based optimization method, first
presented by Box [31]. With this method, a number of points (sets of
design variables) will be evaluated against the objective function. The set
of design variables minimizing the objective function is denoted as the best
point xb, while the one maximizing the objective function is denoted as
the worst point xw. Their corresponding values of the objective function
are noted as the best and worst values. The candidate point is found by
the reflection of the worst point through the centroid xc with a reflection
coefficient α (as shown in Fig. 4.4), yielding the following expression for the
candidate design point.

xc =
1

m− 1

m∑
i=1

xi, xi 6= xj (4.27a)

xoldcand = xc + α(xc − xw) (4.27b)

cand

 
  

c
w

i

m

old

After enough 

iterations

Figure 4.4: Illustration of the Complex method.

To avoid converging at a local minimum, the candidate point can be
modified as

xcand =
1

2

(
xoldcand + εxc + (1− ε)xb

)
+ (xc − xb)(1− ε)(2K − 1) (4.28)

where K is a random number varying in the interval [0, 1], with

ε =

(
nr

nr + kr − 1

)nr+kr−1
nr



66 4.5. The arm design optimization

Here kr is the number of repeating times the point has repeated itself, and
nr is a parameter which is recommended as 4 in the program. The algorithm
converges when the difference between the best and worst objective function
values is less than a user defined tolerance.

4.4.2 Design variable programming

The design points in the Complex method are usually not integers. On
the other hand, the design variables um and ug have to be integral, since
they are the index numbers from the categories of motors and gearboxes.
Hereby, a round function is introduced to transfer the design variables into
integral numbers. The round function is given as

xDV = round(x)

=

{
xint; if xint ≤ x < xint + 0.5

xint + 1; if xint + 0.5 ≤ x < xint + 1
(4.29)

where x is a design variable manipulated by the Complex method, xint is
the integral part of the number x, and xDV is the rounded design variable.
xDV is used to update link lengths and the mass of motors and gearboxes
in inverse kinematic and dynamic analysis.

4.4.3 The optimization routine

The implementation of the optimization takes two steps: implementation of
the optimization routine and generation of a parametric simulation model.
The optimization program is implemented in Matlab. The flow diagram of
the optimization routine is shown in Fig. 4.5.

4.5 The arm design optimization
4.5.1 Initial arm trajectory

Design optimizations were conducted for the robot arm, using the integrated
dimensional and drive-train optimization method. The initial arm trajecto-
ry in the base coordinate system is defined as Xef (t) = 50+400(1−cos(t)),
Yef (t) = −1000 + 800(1− cos(t/2)), and Zef (t) = 280 + 250(cos(t/2)− 1),
all with unit of mm. The Euler angles for the end-effector are given as
[0, cos(t/20), 0], which implies the end-effector remains horizontal during
the motion. The payload is defined as a point of mass of 5kg.

4.5.2 Parameterized dimension
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Figure 4.5: Diagram of the optimization routine.

The variable geometric dimensions include the lengths of the upper arm
l1 and lower arm l2 (in Fig. 4.2), while h1 and d1 are fixed. To keep the
reachable space of the robotic arm constant, the total reaching distance
L = l1 + l2 is fixed.

One non-dimensional parameter r is introduced as r = l1/L. Considering
the structural issues, a minimum length is required for both lower and upper
arms, which means

r ∈ [rmin, rmax] (4.30)

The link length ratio r is manipulated in the interval [rmin, rmax], so there
is infinite number of ratios theoretically. In practice, a vector r is defined
by discretizing r in the interval [rmin, rmax] with a step of Z = 0.05.

r = {rmin + ud · Z}ud=c
ud=1 (4.31)

where ud is an index number for this length ratio, and c = (rmax−rmin)/Z+
1. In the case of optimization with multiple dimensions, ud becomes an array
of indices, ud, for dimensional variables.
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4.5.3 Candidate components

The candidate components, including motors and gearboxes, can be defined
by the designer on the basis of available products. In this work, the
components are to be selected from Maxon motors and Harmonic drives. To
this end, nine candidate motors are selected. They are listed in the database
ascendingly with respect to the mass of motor, as shown in Table 4.2.
Moreover, four gearboxes from Harmonic Drive CPU units are selected and
included in the database, as listed in Table 4.3. For the Harmonic Drive
gearboxes, the efficiency is a function of operation speed. In this paper,
the gear efficiency is set to 0.85 for all gearboxes, which is an average value
from product catalog.

Table 4.2: Candidate motor data from Maxon Motor [53].

Index Motor Tm Tmaxm Nmax
m Jm mm

No. Model [Nm] [Nm] [rpm] [g · cm2] [kg]
1 RE 25 0.0284 0.28 14000 10.5 0.13
2 RE 26 0.0321 0.227 14000 12.1 0.15
3 EC-i 40 0.0667 1.81 15000 24.2 0.21
4 RE 30 0.0882 1.02 12000 34.5 0.238
5 EC 32 0.0426 0.353 25000 20 0.27
6 RE 35 0.0965 0.967 12000 67.4 0.34
7 RE 36 0.0795 0.785 12000 67.2 0.35
8 EC 40 0.127 0.94 18000 85 0.39
9 RE 40 0.184 2.5 12000 138 0.48

Table 4.3: Candidate gearbox data from Harmonic Drive [54].

Index CPU Unit Ratio Tg Tmaxg Nmax
g Jg mg

No. Size [Nm] [Nm] [rpm] [kg ·m2] [kg]
1 14 100 11 54 8500 0.033× 10−4 0.54
2 17 100 39 110 7300 0.079× 10−4 0.79
3 20 100 49 147 6500 0.193× 10−4 1.3
4 25 100 108 284 5600 0.413× 10−4 1.95

The gear ratio of each joint is set to ρ = {200, 200, 200, 51, 100}, orderly
from Joint 1 to 5. Note there are two stage gearboxes in Joints 1, 2 and 3,
a planetary gearhead and a Harmonic Drive unit. For simplicity, only the
mass of the Harmonic Drive gearbox is parameterized, while the mass of
the planetary gearhead is set to constant. The Harmonic Drive CPU unit
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is used in all joints except Joint 4, due to the joint structure consideration.
A planetary gearhead is used in Joint 4, so ug,4 = 0.

4.5.4 Optimization results

Once the candidate components have been selected, their corresponding
limits of the inequalities (4.26c-4.26h) are determined. The limit of
kinematic performance GCI is set to Cmin = 0.02, a limit that can be
satisfied by a robotic arm with link ratios between r = 0.2 ∼ 0.8. Optimized
designs of motors and gearboxes for the robotic arm are listed in Table 4.4.
The initial combination of motors and gearboxes are selected based on
previous dynamics simulation of the robotic arm. The optimized mass
of the robotic arm is 9.92 kg, with a reduction of 41% corresponding to
the initial combinations. Another optimization case with fixed link length
r = 0.5 is also shown in Table 4.4 for comparison. In this design case, the
mass change is not significant relative to the previous optimized case, but
still noticeable. The change is due to the size of the motor at Joints 1 and 3.
Referring to Table 4.2, the corresponding nominal torques are 0.0426 Nm
(EC 32) and 0.0965 Nm (RE 35) for Joint 1.

Table 4.4: Optimal link ratio and drive-train combinations for minimization of
arm mass.

Joint Initial Optimized Fixed r = 0.5
Motor Gearbox Motor Gearbox Motor Gearbox

1 RE 40 CPU 17 EC 32 CPU 14 RE 35 CPU 14
2 RE 35 CPU 17 RE 25 CPU 14 RE 25 CPU 14
3 RE 35 CPU 17 RE 30 CPU 14 RE 35 CPU 14
4 RE 35 Gearhead RE 25 Gearhead RE 25 Gearhead
5 RE 35 CPU 17 RE 25 CPU 14 RE 25 CPU 14

Link ratio r = 0.5 r = 0.6 r = 0.5
Arm mass[kg] 16.7 9.92 9.98

The convergence of the objective function is depicted in Fig. 4.6, both best
(black dot) and worst (gray dot) values from the Complex algorithm are
shown. The solution to the optimal result is achieved at 3500 iterations
with 130 population sizes. In this work, the tolerance of convergence is
0.0001.

The convergences of the link length ratio and GCI are shown in Figs. 4.7 and
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Figure 4.6: Convergence of the mass of the robotic arm.

4.8. The link length ratio is converged to r = 0.6. Figure 4.9(a) illustrates
the convergence of motor design variables. Only the convergence plots for
Joints 1 and 5 are displayed for clarity. The convergence of gearbox design
variables is depicted in Fig. 4.9(b). Comparing the convergence rates for the
motor and gearbox design variables, the gearbox design variables converge
faster towards the optimal results than the motor design variables. This
phenomena is caused by that the mass difference among Harmonic Drive
units is larger than among motors.
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Figure 4.7: Convergence of the link length ratio.

The variations of motor torques of Joints 1 and 2 for the initial and the
optimal design are shown together in Fig. 4.10. The torques of the optimal
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Figure 4.9: Convergence plots for the design variables of motors and gearboxes.

design are depicted in black color, and that of the initial design are in gray.
The RMS value of each torque is depicted with dashed line. It is seen that
the optimal design has a reduction of 41.29% RMS torque for Joint 1, and
a reduction of 26.87% RMS torque for Joint 2.

4.5.5 Design optimization with an alternative trajectory

Another trajectory is used for the integrated optimization. This trajectory
is given for a pick-and-place operation (PPO) defined by Xef (t) = 600,
Yef (t) = −150 cos(t)−150, and Zef (t) = 300 cos(t/2)−100, all with unit of
mm, as depicted in Fig. 4.11. The duration is 6.2 seconds. The orientation
for the end-effector is described by Euler angles [0, cos(t/20), 0], following
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Figure 4.10: Motor torques for initial and optimal drive-train combinations.
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Figure 4.11: Illustration of the alternative trajectory.

Convergence of the mass of the robotic arm is depicted in Fig. 4.12. The
solution to the optimal result is achieved at 3800 iterations with 130
population sizes. The optimization result for the alternative trajectory is
listed in Table 4.5. The optimization with the alternative trajectory yields
a design of mass slightly less than the case with the initial trajectory.

4.5.6 Optimization with a different GCI limit
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Figure 4.12: Convergence of the mass of the robotic arm for the alternative
trajectory.

Table 4.5: Optimization results for an alternative trajectory.

Joint Motor Gearbox
1 EC 32 CPU 14
2 EC-i 40 CPU 14
3 RE 25 CPU 14
4 RE 25 Gearhead
5 RE 25 CPU 14

Link ratio r = 0.6
Arm mass[kg] 9.85

Another optimization is conducted with Cmin = 0.05. The trajectory
utilizes the same one in Sec. (4.5.4). The convergence of the objective
function is depicted in Fig. 4.13. The optimized mass is 9.88 kg. The
solution to the optimal result is achieved at 3500 iterations, which implies
the same converging rate as the case with Cmin = 0.02.

The link length ratio is converged to r = 0.6. The variance of GCI during
the optimization is shown in Fig. 4.14. The convergence result with Cmin =
0.05 is identical to the one with Cmin = 0.02, as shown in Figs. 4.6 and 4.8.

4.5.7 Discussions
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Figure 4.13: Convergence of the mass of the robotic arm for Cmin = 0.05.
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Figure 4.14: Convergence of the GCI of the arm for Cmin = 0.05.

By comparing the optimization results for two trajectories (Tables 4.4 and
4.5), it can be seen that the minimum mass changes slightly, while the
integrated optimization method yields different combinations of motors and
gearboxes. On the other hand, the link length ratio of the arm structure
remains unchanged. This suggests that the design optimization with the
selected trajectories is practical. The results generated from a worst case
identified by the first trajectory is able to fulfill dynamic requirements in
normal manipulations.

The optimal link length ratio for both trajectories and different GCI limits
is r = 0.6. Comparing this ratio to some robotic manipulators [61]
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such as KUKA-KR-R650 (r = 0.55), Denso-VM-6083D series (r = 0.54),
Mitsubishi-RV-2AJ series (r = 0.61) and Staubli-TX40 series (r = 0.58), the
optimal ratio agrees generally with these industrial robots. The difference
between these ratios can be considered as the influence on arm shape and
mass distributions. The prototype of the 5-dof robotic arm in this work
is shown in Fig. 4.15. The components of drive-train in the prototype are
selected and scaled based on the optimization results.

Figure 4.15: Prototype of the 5-dof robotic arm.

While the integrated dimensional and drive-train design optimization was
done on a platform developed with Matlab, the method can be applied to
commercial available CAD/CAE systems. To this end, dynamics simulation
will be implemented in a CAE system, e.g. MSC.ADAMSTM. On the other
hand, Matlab programme will serve as an interface between the user and
CAD/CAE systems and run the Complex routine. In this way, the method
can easily be extended to include other constraints, for example, strength
constraints evaluated by FEA software like ANSYSTM.

The proposed approach is aimed for the off-the-shelf design of a robotic arm,
for which the drive-train components are standard commercial products.
This implies that the performance (weight) improvement with the developed
method may be limited for light-weight robot designs with customer
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designed actuators, as the case of DLR light-weight arm, for which the
challenges lie in the novel motor design, topology optimization and new
materials, rather the problems addressed in this work.

4.6 Conclusions

An integrated dimensional and drive-train optimization method was pro-
posed for the design of robotic manipulators. Selections of geometric di-
mensions, motors and gearboxes were formulated as a discrete optimization
problem, which was solved by a non-gradient optimization method. Global
conditioning index was taken as constraint on kinematic performance of the
robot. The robot dynamics was constrained by considering characteristics
of motors and gearboxes. The proposed method is able to reach a design
with lower mass and optimal geometric dimensions. A 5-dof light-weight
anthropomorphic robotic arm was designed by implementing the presented
method. Case studies were conducted to demonstrate the application of
the method in the design of robotic manipulators. The optimal design
is able to fulfill dynamic requirements in normal operations. In the
future works, constraints will be extended to include considerations such
as strength/stiffness and energy consumptions.
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Abstract

This paper proposed a new approach to the design and optimization of
lightweight robotic arms, where robot kinematics, dynamics, drive-train
design and strength analysis by means of finite element analysis (FEA) are
considered. The approach makes use of a discrete parameterized robotic
model, in which kinematic dimensions, structural dimensions, the motors
and gearboxes from commercially available components are parameterized
as design variables for design analysis and optimization. Constraints are for-
mulated on the basis of kinematic performance, dynamic requirements and
structural strength constraints, whereas the main objective is to minimize
the weight. The Complex method is selected for the discrete optimization
problem. An integrated design platform is developed to implement the
proposed approach, which enables robot design analysis and optimization.
The proposed approach is demonstrated with a design example of a five
degree-of-freedom lightweight arm for assistive applications.

5.1 Introduction

Light and strong robotic arms are desirable for many applications where
robots interact with human closely. Examples of light-weight design can
be found in a number of robots such as the DLR robotic arm [4], WAM
manipulator by Barrett Technology [8], among others. However, the design
of lightweight robots faces many challenges, varying from power supply,
actuators, power transmission and structural parts. New methods are
required to take these challenges for lightweight designs.

Among factors that can contribute to a lightweight design, the drive trains
and the structural parts are considered as the main two influencing the
mass reduction. A majority of research work in design optimization are
related to the drive-train design. An early attempt on drive-train design
optimization can be found in [18], in which Chedmail and Gautier proposed
a method for the optimum selection of robot actuators to minimize the
total mass of all the actuators. Pettersson and Ölvander [19] reported
a method of design optimization, in which the drive-train of two joints
were optimized for an industrial manipulator. A simulation environment
called Modelica with robot optimization facilities was presented, where
the parameters of a controller were tuned by a multi-criteria parameter
optimization method to improve the system dynamics [20]. A drive-
train design optimization method was reported in [63], which is able to
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optimally select combinations of motors and gearboxes from a catalogue of
commercially available components for each dof of a robot arm.

Lightweight design of structural parts can contribute a large reduction to
the weight of the system. Regarding structural components optimization,
finite element analysis (FEA) is widely used. FEA was utilized to conduct
structural optimization in the design of humanoid robots [28]. The
utilization of FEA in robotic arm design and structural optimization can
be found in [29, 30].

On the other hand, dimensional optimization was studied for improvement
of robotic performance, either kinematic or dynamic one. An integrated
structure-control design optimization method of a two-link flexible robot
arm was presented, where the structural and control parameters were
optimized simultaneously [23]. An optimal design of manipulator parameter
using evolutionary optimization method was proposed in [24]. Optimal
dynamic performance based methods was reported in [26], among others.
It can be noticed that structural dimensions of robotic manipulators were
rarely considered. Moreover, dimensional and drive-train optimizations
were mostly conducted separately. An integrated approach is desired in
order to fully utilize the potential of applying optimization techniques to
robot design.

In this work, an integrated design and optimization method is developed
for the design of lightweight robotic manipulators. The method combines
the kinematics, dynamics and structural strength analysis in a single
design stage, while the main objective is to minimize the weight of the
robot. The proposed method extends the integrated design optimization
method reported in authors’ previous work [64]. In the new method,
the structural dimensions of a robotic arm are taken as variables in the
design optimization, in addition to the parameters of the drive-trains. The
arm structure and the drive-train will be optimized to obtain light-weight
robotic arm, while constraints on the kinematics, drive-train dynamics and
structural strength are considered. The paper shows that the integrated
optimization method can contribute to further reducing the arm weight.

The paper is organized as follows: Section 5.2 introduces a robotic arm and
the parameterized model. Kinematic, drive-train and structural strength
constraints are developed in Sections 5.3, 5.4 and 5.5, respectively. Section
5.6 presents the formulation of the integrated design optimization. Section
5.7 illustrates the optimization procedure of the proposed method. A design
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example is given in Section 5.8, followed by conclusions in Section 5.9.

5.2 A robotic arm

The light-weight robotic arm considered in this paper has five degrees of
freedom (dof), with two dof at the shoulder, one at the elbow, and two
at the wrist, as shown in Fig. 5.1(a). This is a human-like arm design,
which is to be mounted on an electric wheelchair to assist disabled in simple
manipulations like picking, placing, door opening, etc. For this purpose, a
gripper is employed at the end of the arm, as demonstrated in Fig. 5.1(b).

Joint 1
Joint 2

Joint 3

Joint 4

Joint 5

Section view of Joint 2

Harmonic

drive

gearbox

Gearhead Motor

(a) (b)

Figure 5.1: A 5-dof light-weight anthropomorphic arm: (a) CAD model, (b) a
scenario of the intended application.

5.2.1 Arm mechanism

A modular approach is adopted in the design. CPU series gearboxes of
Harmonic DriveTM are used as transmission elements and, simultaneously,
as the mechanical joints, for the different dof. To increase the torque
capabilities of Joints 1, 2 and 3, a second stage of gearhead is used between
Harmonic Drive and the motor. The geared motors and Harmonic Drive
gearboxes are mounted inside the joint housings, while the axes of rotation
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coincide with the joint axes. The physical realization of Joint 2 is illustrated
in Fig. 5.1(a).

5.2.2 Parameterized dimensions

The structural parts of the robotic arm are to be optimized in the integrated
optimization method. Some structural dimensions are parameterized, where
l1 and l2 are lengths of the upper and lower arms.

Figure 5.2 shows some parameterized dimensions of the robotic arm. These
dimensions fall into two groups: the assembling dimensions including the
link lengths of the upper arm l1 and the lower arm l2, and the structural
dimensions displayed in Fig. 5.2(b). The assembling dimensions determine
the robotic arm’s kinematic performance, while the structural dimensions
affect the arm structural strength. The descriptions of the parameterized
dimensions are listed in Table 5.1.

l1

l2

ls1

a1

a2

lh1

lh1

wh1
wh1

ra

Ra

rc

rb

Rb

rc

ls2

lh2

lh3 wh2

wh2

b1b2

(a) (b)

Figure 5.2: Dimensional parameters of the robotic arm.

To keep the reachable space of the robotic arm constant, the total reaching
distance L = l1+l2 is fixed. One non-dimensional parameter r is introduced
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Table 5.1: Structural parameters of the robotic arm [mm].

Upper arm Forearm Parameter descriptions
ls1 ls2 tube length
ra rb inner radius
Ra Rb outer radius
wh1 wh2 widths of the opening slots
lh1 lh2, lh3 lengths of the opening slots

a1, a2 b1, b2 lengths used to position the slots

as r = l1/L. Considering the structural issues, a minimum length is required
for both lower and upper arms, which means r ∈ [rmin, rmax].

The lengths of arm links are subject to the size of joints. In this design,
we take ls1 = l1 − 150 [mm] and ls2 = l2 − 150 [mm]. Other dependent
dimensions are determined by: lh1 = (ls1−a1−a2−30)/2 [mm], lh3 = lh2/2
[mm], lh2 = 2(ls2 − b1 − b2 − 30)/3 [mm].

The dimensional design variables include r, ra, rb, wh1, and wh2, as shown
in Fig. 5.2(b). In practice, an array of dimension u is defined by discretizing
r, ra, rb, wh1 and wh2 from each interval with a step e.

u = {umin + ud · e}ud=c
ud=1 (5.1)

where ud = [ur, ura , urb , uwh1
, uwh2

], and c = (umax − umin)/e+ 1.

5.2.3 Jacobian matrix

The joint angular velocity can be calculated with the Jacobian matrix

θ̇ = J−1vef (5.2)

where θ̇ = [θ̇1, θ̇2, . . . , θ̇n]T is an n-dimensional (n denotes the number of
dof) vector of the joint angular velocities, J the Jacobian matrix, and vef
the velocity of the end-effector.

For a revolute joint, the Jacobian matrix can be calculated by [39]

J = [J1,J2, . . . ,Jn] (5.3)

with

Ji =

[
zi−1 × pi−1

zi−1

]
, i = 1, . . . , n (5.4)
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where zi−1 and pi−1 are given by:

zi−1 = Ri−1 [0 0 1]T (5.5a)
pi−1 = Ri−1qi−1 + pi (5.5b)

with qi−1 = [ai cos θi, ai sin θi, di]
T . Matrix Ri−1 denotes the rotation

matrix from the reference coordinate system to the (i − 1)th coordinate
system. The parameters ai and di are defined following the D-H convention,
i.e., ai is offset distance between two adjacent joint axes, and di is
translational distance between two incident normals of a joint axis. When
the desired end-effector velocity vef is given, the joint angular velocity can
be solved by Eq. (5.2).

5.2.4 Inverse dynamics

The integrated structural and drive-train optimization utilizes a dynamic
model of the robotic arm for dynamic evaluations. The governing equation
of the arm motion can be written as:

M(θ)θ̈ + v(θ, θ̇) + g(θ) = τ (5.6)

where M is the mass matrix, v is the vector of Coriolis and centrifugal
terms of the links, g is the vector of gravitational forces, and τ is the vector
of joint torques. The mass matrix M of Eq. (5.6) is not constant. Instead,
it changes with arm poses, arm dimensions and mass distributions.

5.3 Kinematic constraints

The integrated optimization is proposed to minimize the weight of the
robotic arm with constraints on kinematics performance, drive-train, and
the structural strength. The selection of a drive-train is constrained
through the dynamic equation and the selecting criteria for motors and
gearboxes. The structural dimensions influence the robotic dynamics. On
the other hand, they also determine the kinematic performance of the
robotic manipulator. This may be formulated as a constraint on the
kinematic performance index as described presently.

The kinematics performance is one of the major concerns in robot design.
It is desirable for a robot to have a high kinematics performance, while
the drive-drain is optimized. Several performance indices are available for
the design of robotic manipulators. They include manipulability measure



Chapter 5. Article III 85

proposed by Yoshikawa [56] and the global conditioning index (GCI) by
Gosselin and Angeles [57]. The GCI is considered in this work.

The GCI within a workspace W is defined as

GCI =

∫
W

1
κdW∫

W dW
(5.7)

with the condition number κ given by

κ =‖ J(θ,ud) ‖‖ J−1(θ,ud) ‖ (5.8)

where J(θ,ud) is the Jacobian matrix defined in Eq. (5.2), θ is the vector
of joint angles, and ud is an array of structural dimensions. The Euclidean
norm ‖ · ‖ of the matrix is defined as

‖ J ‖=
√
tr(JTNJ) (5.9)

with N = 1
nI, where n is the dimension of the square matrix J, and I is

the n × n identity matrix. An example showing the relation between the
inverse of condition number 1/κ and the joint angles θ2 and θ3 is depicted
in Fig. 5.3.
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Figure 5.3: The inverse of condition number 1/κ with respect to θ2 and θ3.

In practice, the GCI of a robotic manipulator is calculated through a discrete
approach as [62]

GCI =
1

V

m∑
i=1

1

κi
∆Vi (5.10)
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where V is the workspace volume, and m is the number of discrete points.
In the case of equal-volumetric discretization, ∆Vi ≡ ∆V , Eq. (5.10) is
transformed to

GCI =
1

m

m∑
i=1

1

κi
(5.11)

The GCI is dimension-dependent, which means

GCI = GCI(ud) (5.12)

To keep a high kinematics performance with selected link lengths in the
integrated optimization, a constraint is given on the GCI

GCI(ud) ≥ Cmin (5.13)

where Cmin is the minimum acceptable GCI.

5.4 Drive-train constraints

A drive-train model of a single joint is shown in Fig. 5.4. The drive-train
consists of a motor, a linkage and a gearbox for speed reduction. Taking
into account of gear efficiency, the required motor torque for the ith joint
can be calculated by

τm,i =

{
(Jm + Jg)θ̈(t)ρ+

τ(t)

ρηg

}
i

; i = 1, . . . , 5 (5.14)

where ρi is the gear ratio. Jm,i is mass moment of inertia of the ith motor;
Jg,i is the equivalent mass moment of inertia of the ith gearbox; ηg,i is the
corresponding gear efficiency, and τi(t) is the load at the output link which
can be solved by (5.6).

5.4.1 Motor selection criteria

Motors for robotic arms are usually selected from two motor groups, brushed
and brushless DC motors. In selecting motors, the following three criteria
are considered:

τrms ≤ Tm; τp ≤ Tmaxm ; np ≤ Nmax
m (5.15)

where τrms denotes the root mean square (RMS) value of the required motor
torque, and Tm is the nominal torque of the motor. τp = max{|τm|} is the
required peak torque, and Tmaxm is the stall torque of the motor. np =
max{|2πθ̇(t) · ρ|} is the required peak speed corresponding to the motor,
and Nmax

m denotes the maximum permissible speed of the motor.
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Figure 5.4: Schematic view of drive-train model for a single joint.

5.4.2 Gearbox selection criteria

For the selection of gearboxes, the following three criteria apply:

The first criterion is the RMC value of torques (τrmc), recommended by the
Harmonic Drive gearbox manufacturer [50]. The RMC value is a measure
of the accumulated fatigue on a structural component and reflects typical
endurance curves of steel and aluminium [51]. It is therefore relevant to
gearbox lifetime, and this criterion has also been used in robotic applications
[52]. With this criterion, a constraint is derived as

τrmc ≤ Tg (5.16a)

where τrmc = 3

√
1

∆t

∫ ∆t
0 τ3(t)dt, with τ(t) being the required torque from

the gearbox output. Tg is the limit for rated torque of the gearbox.

Other criteria for gearbox selection include

τg ≤ Tmaxg ; ng ≤ Nmax
g (5.16b)

where τg = max{|τ(t)|} denotes the required peak torque with respect
to the output side, and Tmaxg is the allowable peak torque of the gearbox.
ng = max{|θ̇(t) · ρ|} is the required maximum input peak speed, and Nmax

g

denotes the maximum permissible input speed of a gearbox.

5.5 Structural strength constraints

While the robotic arm becomes lighter, it has to meet strength requirements
as well, which need to be included as constraints in optimization. In this
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work, the stress and deformation of the robotic arm are considered. To
maintain the strength and stiffness of the structure, the maximum von-
Mises stress has to be smaller than the yield strength of the material.

Smax < Sy (5.17)

The maximum deformation of the end-effector has to be under a relevant
limit for operational consideration of the robot.

Dmax < Dlim (5.18)

To integrate the FEA into the optimization method, a FEA model of the
robotic arm is to be built and simulated in ANSYS WorkbenchTM . The
joint structures are imported into ANSYS Workbench from CAD geometry
file. The upper and lower arm links are built as parameterized model in
Workbench.

The boundary conditions and loads of the robotic arm remain unchanged
through the optimization iterations, as depicted in Fig. 5.5(a), where the
shoulder joint of the arm is grounded. External force (payload) is applied on
the gripper. A FEA simulation on the robotic arm is shown in Fig. 5.5(b).

5.6 Integrated design optimization

The objective of the integrated design optimization is to design a light-
weight robotic arm. The task is to find the lightest combination of motor
and gearbox for all five joints and the optimal link lengths that fulfill
all constraints associated with the kinematic, strength and drive-train
constraints. The optimization will also minimize the mass of the robotic
structure (marm) by selecting optimal dimensions that fulfill constraints on
the structural statics. The objective function, f(x), is defined as

min
x

f(x) =
n∑
i=1

{mm(um) +mg(ug)}i +marm(ud)

x = [um,ug,ud] (5.19)

S.T.

Kinematic constraint:

Cmin ≤ GCI(ud) (5.20a)
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(a)

(b)

Figure 5.5: (a) Boundary conditions of the FEA model, (b) FE analysis on the
robotic arm.

Strength constraints:

Sy > Smax(ud) (5.20b)
Dlim > Dmax(ud) (5.20c)

Drive-train constraints:

Tm,i ≥

√
1

∆t

∫ ∆t

0

{
Jm(x) + Jg(x))θ̈(t)ρ+

τ(t,x)

ρηg

}2

i

· dt (5.20d)

Tmaxm,i ≥ max

{∣∣∣∣Jm(x) + Jg(x))θ̈(t)ρ+
τ(t,x)

ρηg

∣∣∣∣}
i

(5.20e)
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Nmax
m,i ≥ max

{
|2πθ̇(t) · ρ|

}
i

(5.20f)

Tg,i ≥
3

√
1

∆t

∫ ∆t

0
τ3
i (t,x) · dt (5.20g)

Tmaxg,i ≥ max {|τ(t,x)|}i (5.20h)

Nmax
g,i ≥ max

{
|θ̇(t) · ρ|

}
i

(5.20i)

where design variables of x include the index numbers of motors um =
[um,1, . . . , um,n] and gearboxes ug = [ug,1, . . . , ug,n], relative to databases
containing commercially available components, and an array of dimensional
variables ud.

5.7 Procedure of optimization

The integrated design optimization problem is solved by the Complex
method, a method suitable for nonlinear and discrete optimization prob-
lems. In this section, the Complex method is briefed first, followed by the
procedure of optimization.

5.7.1 Optimization by the Complex method

The Complex method is a non-gradient based optimization method [31].
With this method, a number of points (sets of design variables) will be
evaluated against the objective function. The set of design variables
minimizing the objective function is denoted as the best point xb, while
the one maximizing the objective function is denoted as the worst point
xw. Their corresponding values of objective function are noted as the best
and worst values. After each evaluation, a candidate point is generated by
reflecting the worst point through the centroid xc with a reflection coefficient
α (as shown in Fig. 5.6).

xcand = xc + α(xc − xw) (5.21)

where xc = 1
m−1

∑m
i=1 xi, xi 6= xj . The coefficient α is experimentally

determined, which takes the value of 1.3. To avoid converging at a local
minimal, the candidate point can be found through a modified approach
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Figure 5.6: Illustration of the Complex method.

[65],

xnewcand = 1
2

(
xoldcand + εxc + (1− ε)xb

)
(5.22)

+(xc − xb)(1− ε)(2K − 1)

where K is a random number varying in the interval [0, 1]. Moreover,

ε = β−β;β = 1 +
kr − 1

nr
(5.23)

Here kr is the number of repeating times the point has repeated itself, and
nr is a parameter which is recommended as 4 in the program. The algorithm
converges when the difference between the best and worst objective function
values is less than a user defined tolerance.

5.7.2 Design variables programming

The design points in the Complex method are usually continuous. However,
the design variables um, ug and ud have to be integers, since they are the
index numbers from the databases of motors and gearboxes. To deal with
the integer design variables, a round function is introduced to transfer the
design variables into integers. The rounding function is given as

xDV = round(x) (5.24)

=

{
xint; if xint ≤ x < xint + 0.5

xint + 1; if xint + 0.5 ≤ x < xint + 1

where x is the design variable manipulated by the Complex method, xint is
the integral part of the number x, and xDV is the rounded design variable.
The rounded variable xDV is used to update the mass of motors and
gearboxes in inverse dynamic analysis, as well as the allowable torque and
speed values used to examine constraint violations.
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5.7.3 The optimization routine

The integrated optimization method is implemented as a design optimiza-
tion platform containing five modules, as shown in Fig. 5.7. The five
modules include the CAD module, the kinematic simulation, the dynamic
simulation, the FEA module, and the optimization module. Among them,
the CAD module is used to build the structural model of the robotic
manipulators. The kinematics simulation module is used to conduct the
kinematics analysis of the robot system. Kinematics performance such as
workspace (WS), global conditioning index (GCI), etc., are investigated in
this module. The dynamics simulation module is used to run the dynamics
analysis of a multibody system. The FEA system module deals with the
structural static and dynamic analysis using finite element method. The
optimization module contains algorithms that are able to deal with highly
non-linear and discrete problems for running the design optimization.

CAD system

Parameterized

geometric model

Robot kinematics 

model
Kinematics analysis 

(WS, GCI ...)

Dynamics model

Dynamics analysis 

(Driving torque)

FEA simulation

Structural static 

validation

OPTIMIZATION

Optimization of drive train, 

dimensions, shape

Optimized robot

Figure 5.7: Functional modules of the integrated optimization approach.

The implementation of the integrated optimization method consists of
programming of the optimization algorithm, generation of a parametric
simulation model and FEA in ANSYS Workbench. Strength analysis is
executed through running ANSYS Workbench by Matlab in batch mode.
The kinematic and dynamic analysis, and the optimization algorithm are
programmed in Matlab. The flow diagram of the optimization routine is
shown in Fig. 5.8.
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Figure 5.8: Diagram of the optimization routine.

5.8 The arm design optimization

An example of design is included to demonstrate the developed method.
Prior to design optimizations, trajectories are defined for kinematic and
dynamic analysis.

5.8.1 Arm Trajectories

To simplify the trajectory definition, straight-line motion is selected for
the robotic arm. A straight line trajectory starting from an initial point
p0 = (x0, y0, z0)T at t = 0 to an ending point pe = (xe, ye, ze)

T at time
t = T , can be expressed as

p− p0 = up(pe − p0), up ∈ [0, 1] (5.25)

where, the parameter up controls the movement of the end-effector. A
trajectory with C2-continuity can be planned as

up(t) = p0 + p1t+ p2t
2 + p3t

3 (5.26)

where p0, p1, p2 and p3 are constant coefficients.
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Assuming the velocities at the initial and ending point are ṗ0 = (ẋ0, ẏ0, ż0)T

and ṗe = (ẋe, ẏe, że)
T , the four constant coefficients can be solved by

p0 = x0; p1 = ẋ0 (5.27a)

p2 =
3

T 2
(xe − x0)− 2

T
ẋ0 −

1

T
ẋe (5.27b)

p3 = − 2

T 3
(xe − x0) +

1

T 2
(ẋ0 + ẋe) (5.27c)

In this work, we use a group of four trajectories to conduct kinematics and
dynamics simulation on the robotic arm, with the coordinates of the initial
and end points of the trajectories listed in Table. 5.2. Among them, the end-
effector moves horizontally following Trajectory 1, while moves vertically
with Trajectory 2. Trajectories 3 and 4 are paths of different inclination.
The robotic arm starts to move from rest and stops in five seconds. The
Euler angles for the end-effector are given as [0, cos(t/20), 0], which implies
the end-effector remains horizontal during the motion. In each iteration of

Table 5.2: Initial and end points of end-effector trajectories.

Trajectory Initial point [mm] End point [mm]
x0 y0 z0 xe ye ze

1 100 850 300 850 100 300
2 500 500 200 700 700 200
3 500 500 300 550 550 800
4 100 850 200 850 100 700

the optimization, the kinematics and dynamics are analyzed with respect to
the four trajectories. The maximum torques of each joint are used to select
motors and gearboxes for the drive train. Depending on the applications,
the group of trajectories can be extended to contain more trajectories for
more detailed evaluations of torque requirements of the robotic arm.

5.8.2 Material strength limits

The payload is defined as a point mass of 5kg. In the finite element analysis,
the design payload is multiplied by a safety factor, i.e. FA = 100 [N]. The
structure parts of this robot in this work are made of aluminium, so the
yield strength Sy = 280 MPa. The deflection limit at the end-effector is set
to Dlim = 5 mm.
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5.8.3 Candidate components

Nine candidate motors from the Maxon Motor catalogue are considered.
They are listed in a database ascendingly with respect to the mass of motor,
as shown in Table 5.5 of Appendix. The gearboxes used in the robotic
arm are selected from Harmonic Drive CPU units, as listed in Table 5.6 of
Appendix. For the Harmonic Drive gearboxes, the efficiency is a function
of operation speed. In this work, the gear efficiency is set to 0.85 for all
gearboxes, which is an average value from product catalog.

The gear ratio of each joint is set to ρ = {200, 200, 200, 51, 100}, orderly
from Joint 1 to Joint 5. Note there are two-stage gearboxes in Joints 1, 2
and 3, consisting of a planetary gearhead and a Harmonic Drive unit. For
simplicity, only the mass of the Harmonic Drive gearbox is parameterized,
while the mass of the planetary gearhead is set to constant. The Harmonic
Drive CPU unit is adopted in all joints except Joint 4, due to the joint
structure consideration. A planetary gearhead is used in Joint 4, so ug,4 = 0.

5.8.4 Optimization results

Optimized designs of structural dimensions and drive-train for the robotic
arm are listed in Table 5.3. As shown in the optimization results of Case
A, the optimized weight of the robotic arm is 8.3 kg, a mass reduction to
50% of the initial design being achieved.

Table 5.3: Results of design optimization.

Joint Initial Case A Case B Case C
Motor Gearbox Motor Gearbox Motor Gearbox Motor Gearbox

1 RE 40 CPU 17 RE 30 CPU 14 EC 32 CPU 14 RE 35 CPU 14
2 RE 35 CPU 17 RE 25 CPU 14 RE 25 CPU 14 RE 25 CPU 14
3 RE 35 CPU 17 RE 30 CPU 14 RE 30 CPU 14 RE 35 CPU 14
4 RE 35 Gearhead RE 25 Gearhead RE 25 Gearhead RE 25 Gearhead
5 RE 35 CPU 17 RE 25 CPU 14 RE 25 CPU 14 RE 25 CPU 14

Ratio r = 0.5 r = 0.6 r = 0.6 r = 0.5
Weight 16.7 [kg] 8.3 [kg] 9.92 [kg] 9.98 [kg]
Case A: Optimization with the new method.
Case B: Optimization of drive-train with kinematic constraints.

Case C: Optimization of drive-train only [63].

The convergence of the objective function are depicted in Fig. 5.9, both
the best value (black dot) and worst value (gray dot) from the Complex
algorithm are shown. The solution to the optimal result is achieved at
6500 iterations with 150 population sizes. In this work, the tolerance of
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convergence is equal to 0.0001.

The FEA in ANSYS Workbench is very computationally expensive. It
takes 5 minutes for a single simulation. To increase the efficiency, FEA
simulations were conducted in batch mode for the discrete structural
dimensions and the results consisting of maximum stress, deformation and
mass are stored in a database file. In each iteration of the optimization,
the program will load the FEA results from the database for the integrated
optimization instead of running FEA simulation. Adopting this approach
leads to the computational time reduced from more than 10 days for one
case to 10 minutes only.
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Figure 5.9: Convergence of the weight of the robotic arm.

Figure 5.10(a) illustrates the convergence of motor design variables. Only
the convergence plots for Joints 1 and 5 are displayed for clarity. The con-
vergence of gearbox design variables is depicted in Fig. 5.10(b). Comparing
the convergence rate for the motor and gearbox design variables, the gearbox
design variables converging rate towards the optimal results is faster than
the motor design variables. This phenomena is caused by that the mass
difference among Harmonic Drive units is larger than among motors.

The convergence of the link length ratio is shown in Fig. 5.11. The link
length ratio is converged to r = 0.6. Comparing this ratio to some robotic
manipulators [61] such as KUKA-KR-R650 (r = 0.55), Denso-VM-6083D
series (r = 0.54), Mitsubishi-RV-2AJ series (r = 0.61) and Staubli-Tx40
series (r = 0.58), the optimal ratio agrees generally with these industrial
robots. The difference between these ratios can be considered as the
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Figure 5.10: Convergence plots for the design variables of motors and gearboxes.

influence on arm shape and mass distributions.
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Figure 5.11: Convergence of the link length ratio.

The lengths of the upper arm link ls1 and lower arm link ls2 converge
following the convergence of the link length ratio r. The optimized
structural dimensions of the robotic arm are shown in Table 5.4. The
convergence plots of the inner radius and widths of the opening slots are
depicted in Fig. 5.12. Note that to reduce calculation, wh1 is made identical
to wh2 in this work. According to the structural dimensions in Table 5.4,
FEA is conducted separately for the original and optimized robotic arm
designs, with the von-Mises element stress being depicted in Fig. 5.13.

The variations of motor torques of Joints 1 and 2 for the initial and the
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Table 5.4: Optimal structural dimensions for minimization of weight [mm].

l1 ra rb wh1 wh2

Original 500 31 27 20 20
Optimized 600 34 29 40 40
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Figure 5.12: Convergence plots of structural dimensions.

optimal design of case 3 are shown in Fig. 5.14. The simulation is based on
Trajectory 1 in Table 5.2. The torques of the optimal design are depicted
in black, and that of the initial design are in gray. The RMS value of each
torque is depicted with dashed line. It is seen that the optimal design has
a reduction of 51% RMS torque for Joint 1, and a reduction of 72% RMS
torque for Joint 2.
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Figure 5.13: von-Mises element stress in the original (top) and optimized
(bottom) robotic arms.
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Figure 5.14: Motor torques for initial and optimal drive-train combinations.

The optimization results were compared with the results from a previous
method [63]. Two additional cases are considered for comparison, one case
with link lengths considered as design variables, and the other with all
dimensions fixed. Results are summarized in Table 5.3. It is seen that
the weight change of the robot is not significant in the two optimized
cases without strength constraints, no matter the kinematic constraints are
included or not. A major mass reduction is achieved with the optimization
under the constraint of strength, which reduces the mass of the upper and
lower arm links by 1.7 kg. The comparison reveals that the new method
can contribute to reduce further the robot mass without degrading the
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performance of the robot.

The prototype of the 5-dof robotic arm is shown in Fig. 5.15. The
components of drive-train in the prototype are selected and scaled based
on the optimization results shown in Table 5.3. The prototype doesn’t
utilize the optimized ratio of r = 0.6; instead, the length ratio is r = 0.5.

Joint 1
Joint 2

Joint 3

Joint 4

Joint 5

Figure 5.15: Prototype of the robot arm.

5.9 Discussion and conclusions

An integrated approach for the design of light-weight robotic arms was
proposed in this work. Selections of structural dimensions, motors and
gearboxes were formulated as a discrete optimization problem, which
was solved by a non-gradient optimization method. Global conditioning
index was taken as a constraint on kinematics performance of the robot.
The results show that the method can achieve an optimal design with
minimum mass, while satisfying the constraints on kinematics, drive-train
and structural strength.

The inclusion of the robot structural strength in the optimization benefits
the robot design in several aspects. Firstly, the mass can be effectively
reduced by applying the static strength constraint, as did in this work.
Secondly, this approach can also address the fatigue limit, a major concern
in robot design, by either specifying a minimum stress or conducting fatigue
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simulation in FEA module.

The proposed approach provides a systemic design optimization method
for robots. For a draft robot design with given joint configurations, the
approach can be used to select drive-train components and structural
dimensions for lightweight purpose. Other design criteria like minimal
cost can also be included and defined in the objective function in the
proposed approach. Future work will include the generalization of this
method for different objectives and also the integration of robot control
into the optimization.

Appendix

Table 5.5: Candidate motor data from Maxon Motor [53].

Index Maxon Tm Tmaxm Nmax
m Jm mm

No. Motor [Nm] [Nm] [rpm] [g · cm2] [kg]
1 RE 25 0.0284 0.28 14000 10.5 0.13
2 RE 26 0.0321 0.227 14000 12.1 0.15
3 EC-i 40 0.0667 1.81 15000 24.2 0.21
4 RE 30 0.0882 1.02 12000 34.5 0.238
5 EC 32 0.0426 0.353 25000 20 0.27
6 RE 35 0.0965 0.967 12000 67.4 0.34
7 RE 36 0.0795 0.785 12000 67.2 0.35
8 EC 40 0.127 0.94 18000 85 0.39
9 RE 40 0.184 2.5 12000 138 0.48

Table 5.6: Candidate gearbox data from Harmonic Drive [54].

Index Unit Tg Tmaxg Nmax
g Jg mg

No. Size [Nm] [Nm] [rpm] [kg ·m2] [kg]
1 14 11 54 8500 0.033× 10−4 0.54
2 17 39 110 7300 0.079× 10−4 0.79
3 20 49 147 6500 0.193× 10−4 1.3
4 25 108 284 5600 0.413× 10−4 1.95
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Abstract

Human arm motion can inspire the trajectory planning of anthropomorphic
robotic arms to achieve energy-efficient movements. An approach for
predicting metabolic cost in the planar human arm motion by means of
the biomechanical simulation is proposed in this work. Two biomechanical
models, including an analytical model and a musculoskeletal model, are
developed to implement the proposed approach. The analytical model is
developed by modifying a human muscle expenditure model, in which the
muscles are grouped as torque providers for computation efficiency. In the
musculoskeletal model, the predication of metabolic cost is conducted on the
basis of individual muscles. With the proposed approach, metabolic costs
for parameterized target-reaching arm motions are calculated and utilized
to identify optimal arm trajectories.

6.1 Introduction

A human arm has seven dof (degrees-of-freedom) upon basic definition,
three in the shoulder, two in the elbow, and two in the wrist. The
redundancy in the arm dof implies infinite possible trajectories for a given
movement task. For instance, when we pick up a bottle of water, there
are a great number of trajectories that the arm can follow. With the hand
located at a fixed point, the arm can also have different orientations.

The mechanism behind the selection of the predictable trajectory has been
the subject of study over the years. The kinematic analysis [66, 67]
revealed some interesting kinematic features of arm motions, but could
not explain the planning mechanism for the activation of the individual
muscle. One effective approach to study the planning mechanism is to
examine the mechanical and physiological properties of a muscle, and to
investigate the behaviour of individual muscles in human arm trajectories
[68, 69, 70]. Experimental data on multi-joint human arm trajectories
obtained from restricted horizontal planar movements have shown that
human point-to-point arm motion trajectories have bell-shaped velocity
profiles [71, 72]. Efforts were made to explain the observed trajectories
as solutions to optimization problems. Optimization criteria have been
proposed including minimum jerk theory [66], minimum travel cost theory
[73], minimum isometric torque derivative [74], and averaged specific power
[75]. The criteria used in the optimal trajectory study include also the
minimum energy cost hypothesis for human arm trajectories presented and
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tested by [76], among others.

This paper reports our study of human arm in planar motion. Our study
focuses on the metabolic energy costs in human arm motions. Two human
arm models, one analytical and one musculoskeletal, are proposed within
our study. In the analytical model, the arm is represented by a 2-dof linkage
driven by 4 torque providers (groups of muscles). The muscle metabolism
model is modified from a human muscle energy expenditure model proposed
by [77]. The musculoskeletal model is built in the AnyBodyTM Modeling
System [78]. Both models are applied to planar arm motion in reaching a
group of four targets. For each pair of target points, metabolic energy costs
associated to parameterized arm trajectories are simulated and analyzed,
from which the optimal arm trajectory for each pair of target points is
further identified. The developed models are compared with a model
reported in [76]. The analytical model is efficient in calculating energy
consumptions and predicting optimal trajectories.

6.2 Model of metabolic cost in arm motion
6.2.1 Model of arm

A simplified arm model is shown in Fig. 6.1. Confined to planar motion,
this arm has only two dof, with the shoulder joint situated at the origin of
the coordinate system. The parameters of the arm model are measured or
taken from [79], as listed in Table 6.1. Four target points P1, P2, P3 and
P4 in Fig. 6.1 are specified, with their coordinates (in meter) being (0, 0.2),
(0, 0.5), (-0.2, 0.3) and (0.2, 0.3), respectively. Out of these four points,
four pairs of starting-end points are established to generate trajectories for
arm motions. The combinations of the pairs of points are organized in
eight groups, as listed in Table 6.2, with the arrow indicating the trajectory
direction from the starting point to the ending point. Movements between
two points from Groups A1 to D1 indicate forward human arm motions,
while those from Groups A2 to D2 indicate backward motions.

In this arm model, four pieces of torque providers are defined, as shown in
Fig. 6.1. The torque providers, numbered from 1 to 4, stand for the shoulder
flexor, the elbow flexor, the shoulder extensor, and the elbow extensor,
respectively.

It is assumed that the torque providers inherit the biomechanical properties
of individual muscles. Their models can thus be developed by extending the
existing muscle models with modifications. The torque providers defined in
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Figure 6.1: A simplified human arm model.

Table 6.1: Parameters of the human arm model.
Parameter Value Unit Note

m1 2.0 kg upper arm mass
m2 1.1 kg lower arm mass
m3 0.4 kg hand mass
I1 0.021 kg ·m2 upper arm moment of inertia
I2 0.007 kg ·m2 lower arm moment of inertia
l1 0.29 m upper arm length
l2 0.23 m lower arm length

l1c 0.14 m
distance from centre of mass
to shoulder joint

l2c 0.11 m
distance from centre of mass
to shoulder joint

Table 6.2: Combinations of the target points.
Group A1 Group B1 Group C1 Group D1
P1 → P2 P3 → P2 P4 → P2 P3 → P4

Group A2 Group B2 Group C2 Group D2
P2 → P1 P2 → P3 P2 → P4 P4 → P3
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this study adopt the Hill-type [80] muscle model, with parameters listed in
Table 6.3, where the optimal fiber length Lopt of a torque provider comes
from [81], while the maximum strength-moment Mmax exerted on a joint
by a torque provider is taken from [82].

Table 6.3: Parameters of the torque providers.
Torque Lopt

a Mmax
b

Provider No. [cm] [Nm]
]1 16.2 92
]2 17.3 77
]3 27.9 67
]4 13.4 46

a Optimal fiber length from [81]
b Muscle strength moment from [82]

6.2.2 Model of metabolic costs

The modeling of muscle metabolic costs is modified from the model of the
human muscle energy expenditure proposed by [77]. Let Ė (in Watt/kg)
be the total energy expenditure rate of a single muscle. It can be expressed
as

Ė = ḣa + ḣm + ḣsl + ẇce (6.1)

where ḣa is the muscle activation heat rate, ḣm is the maintenance heat
rate, ḣsl is the shortening/lengthening heat rate and ẇce is the mechanical
power.

In this work, the muscle energy rate Ė is transformed into torque provider
power P (in Watt) as a function of the joint moment and angular velocity,
where both the shortening/lengthening heat rate and the mechanical power
are included. Assuming that the length of a torque provider can never
exceed Lopt, the metabolic power of a torque provider becomes

P = −Misoω +Gs
ρ

σ

Mmax

Lopt
ω (6.2)

where the first term stands for the mechanical power and the second one
stands for the heat rate due to shortening/lengthening. In Eq. (6.2), Miso

is the moment exerted on a joint by the muscle isometric force, and ω is the
joint angular velocity. Moreover, σ is a specific tension, which takes a value
of 0.25MPa, as recommended by Umberger et al. The muscle density for
mammalian muscle is ρ = 1059.7 kg ·m−3 [83].
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The coefficient Gs (in N/kg ) of Eq. (6.2) is a factor of the muscle
shortening/lengthening heat rate [77], which depends on the percentage
of fast twitch fibres (FT), and the shortening or lengthening of the muscle.
When a muscle is shortening, the factor is calculated by

Gs = 0.0323×%FT − 8.33 (6.3)

As an example, when a muscle with 50% fast twitch fibres is shortening,
Gs = −6.72N/kg; and when the muscle is lengthening, it takes the value
Gs = 33.3N/kg.

The isometric moment Miso is the moment exerted by the muscle. This
moment can be obtained by modifying the mechanical joint moment with
respect to the angular velocities of joints [84]. The isometric moment Miso

can be calculated as

Miso =


M(1+Krω)

1−rω for shortening

M(1−7.56Krω)
1−0.8rω−13.6Krω

for lengthening
(6.4)

where rω = ω/ωmax with ωmax being the angular velocity corresponding
to the maximum shortening speed of a muscle. ωmax is set as 22 rad/s
for flexor, and 28 rad/s for extensor, according to [85]. The constant K
depends on the muscle fibre type. Consequently, the metabolic power of a
muscle becomes a function of joint angular velocity ω and joint momentM .

The joint mechanical moment can be calculated for shoulder and elbow
joints, separately. In planar motion, the moment at the shoulder joint, Ms,
is calculated as

Ms = x1m1ÿ1 + x2m2ÿ2 + x3m3ÿ3

− y1m1ẍ1 − y2m2ẍ2 − y3m3ẍ3

+ I1ω̇1 + I2 (ω̇1 + ω̇2) (6.5)

where (x1, y1), (x2, y2), and (x3, y3) specify the centres of mass of the upper
arm, the lower arm, and the hand, respectively. The angular accelerations
of the shoulder joint and the elbow joint are ω̇1 and ω̇2, respectively.
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Likewise, the moment at the elbow joint, Me, is given as

Me = (x2 − xe)m2ÿ2 + (x3 − xe)m3ÿ3

− (y2 − ye)m2ẍ2 − (y3 − ye)m3ẍ3

+ I2 (ω̇1 + ω̇2) (6.6)

where (xe, ye) are the coordinates of the elbow joint.

6.2.3 Parameterized arm motion

To describe all the possible arm motions, a Fourier series of joint angular
velocities is considered

ω = a1 sin

(
πt

T

)
+ a2 sin

(
2πt

T

)
+ a3 sin

(
3πt

T

)
+ · · · (6.7)

where a1, a2, and a3 are coefficients, T is the duration of the motion. Since
the angular velocity has to be zero at t = 0 and t = T , only sine terms are
included in this Fourier series form.

In our study, we use the first two sine terms of Fourier series to approximate
angular velocity. Assuming θ0 and θT be the angles of a certain joint at
the t = 0 and t = T , the angular velocity can be expressed with two-term
Fourier series as

ω =
π

T

[
θT − θ0

2
sin

(
πt

T

)
+D sin

(
2πt

T

)]
(6.8)

where D is the deviation of a certain joint angle, following Alexander’s
definition [76]. Hereby, Ds denotes the shoulder angle deviation, and De

the elbow angle deviation.

By changing the angle deviation factor D for both shoulder and elbow
joints, different trajectories between the same pair of target points can be
generated. Integrating both sides of Eq. (6.8) leads to

θ =
θT − θ0

2

[
1− cos

(
πt

T

)]
+
D

2

[
1− cos

(
2πt

T

)]
+ θ0 (6.9)

The angle of the shoulder θ1 can vary from −45◦ to 150◦, and the angle of
the elbow θ2 can vary from 0◦ to 150◦.

The joint angular acceleration is obtained by differentiating Eq. (6.8)

ω̇ =
(π
T

)2
[
θT − θ0

2
cos

(
πt

T

)
+ 2D cos

(
2πt

T

)]
(6.10)
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6.3 Musculoskeletal model

The torque providers used in the analytical model of the arm motion in
Sec. 6.2 represent groups of muscles. It is desirable to extend the study
to individual muscles and investigate the behavior of the muscles at the
musculoskeletal level. To this end, we developed another model by taking
advantage of a state-of-the-art biomechanical modeling system, namely, the
AnyBody Modeling System [78].

A musculoskeletal right arm model was built in the AnyBodyTM Modeling
System, as shown in Fig. 6.2. The whole musculoskeletal model is comprised
of 39 joints and 134 muscles. The model is derived from the repository
models in AnyBody and each muscle unit is modeled using a three element
Hill-type muscle model. In this study, as the model arm is confined to
planar motion, only glenohumeral flexion joint and elbow flexion joint of
the arm are free to move, and the others are constrained. In addition to the
AnyBody model, a MatLab program was developed to control the changes
of the parameters and trajectories.

Figure 6.2: A human musculoskeletal model built with the AnyBody Modeling
System.
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For human analytical musculoskeletal models, Hill-type muscle models are
almost exclusively used. Hill-type muscle models consist of a contractile
element (CE) that generates force and represents the muscle fibers, and a
passive element (PE) in parallel with CE, and the above two modeling in
series with a serial elastic element (T), as depicted in Fig. 6.3.

T
P
E

lT

lMT

l C
E

f
T

 f
T

C
E

lM

Figure 6.3: Hill-type muscle model consisting of three elements with parallel-
series arrangement.

In the AnyBody modeling system, the mechanical power of an individual
muscle-tendon unit is calculated by

Pmech = fT vMT = fT l̇MT (6.11)

The prediction of metabolic power is based on the efficiency of the
contractile element in AnyBody as

Pm =
Pmech
µ

,

{
µ = 0.25 for shortening
µ = −1.2 for lengthening (6.12)

6.4 The Alexander’s model (reference model)

We compared our models with a model reported by [76], which is introduced
briefly. The method of calculating metabolic power in Alexander’s model
made use of the work of [86]. The metabolic power of a uniarticular muscle
is given by

Pref = MisoωmaxΦ(rω) (6.13)
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where Miso, ωmax and rω follow the definitions in Eq. (6.4). The data fit
function Φ was adopted from Ma and Zahalak’s work, with the form as

Φ(rω) =

{
0.23− 0.16 exp(−8rω) ω ≥ 0
0.01− 0.11rω + 0.06 exp(23rω) ω < 0

(6.14)

The Alexander’s model consists of two antagonistic pairs of muscles to
drive the arm. At any time, only one muscle of each pair is active. The
Alexander’s model uses mechanical power scaled by a function Φ as the
main source of metabolic power for an individual muscle. While only two
muscles are considered to be active, the reference model underestimates the
metabolic power of human arm motion. In contrary, the analytical model
we propose includes mechanical power and muscle shortening/lengthening
heat together as the metabolic power. The analytical model utilizes torque
providers working as muscle groups instead of only four muscles in the
reference model. Our anatomical musculoskeletal model consists of 134
muscles, which is an extremely detailed model of the human arm.

6.5 Simulation routine

When running simulation with the analytical arm model, only one torque
provider of each joint would be activated. The metabolic power of each
torque provider is calculated using Eqs. (6.2)-(6.10). The metabolic energy
of an individual torque provider is obtained by integrating the metabolic
power over the entire duration. The metabolic costs of all individual torque
providers are added together to obtain the total metabolic energy cost.

In the musculoskeletal arm model, all the muscles associated with arm
motion are active. In each simulation, the program will write a file
containing the joint angles. The program in Matlab runs the AnyBody
console application in batch mode to conduct inverse dynamic analysis
on the musculoskeletal arm. The metabolic powers of all the muscles are
summed to obtain the overall metabolic power of the whole arm model. The
metabolic cost can be obtained by integrating the overall metabolic power
over the motion duration. The simulation routine of coupling Matlab with
AnyBody is shown in Fig. 6.4.

For the analytical model, both the shoulder angle deviation Ds and the
elbow angle deviation De are varied from −40◦ to 40◦ in step size of 1◦. For
the musculoskeletal model, Ds and De are varied from −40◦ to 40◦ in step
size of 5◦.
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Figure 6.4: Simulation routine of the musculoskeletal model in the AnyBody
software.

6.6 Simulation results

Biomechanical simulations are conducted on the two proposed models
and the reference model as well. Simulation results of metabolic power,
metabolic energy consumption, and optimal trajectories are compared to
each other among the three models.

6.6.1 Predicted metabolic power

The metabolic powers predicted by the analytical, musculoskeletal and
reference models are shown in Fig. 6.5. Four trajectories are selected from
Groups A1 to D1, respectively. All trajectories are specified by De = −20◦

and Ds = 20◦.

There is barely experimental data about metabolic costs in human arm
motion, due to lack of experimental techniques. We cannot compare the
simulation results to the experiments to validate the model in a holistic level.
However, there is much literature about experimental results and models
on a single muscle [77, 86]. Since we can simulate the actions of all the
muscles in a musculoskeletal arm, the whole metabolic cost for an arm can
be calculated as well. The musculoskeletal model is a much detailed human
arm model with 134 muscles, which means that the musculoskeletal model
predicts the metabolic power consumptions as the sum of the metabolic
power of each individual muscle.

In general, the analytical model predicts metabolic power similar to the
musculoskeletal model. There is a good agreement between the analytical
and musculoskeletal models in the rates of change, referring to the increasing
and declining parts of the metabolic power curves in Fig. 6.5. The reference
model predicts similar metabolic power profile to the analytical model, but
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(a) (b)

(c) (d)

Figure 6.5: Metabolic powers of arm motion with four trajectories.

the maximum values are far below the two proposed models. The analytical
model is more close to the musculoskeletal model in predicting metabolic
power compared to the reference model.

6.6.2 Predicted metabolic energy

The metabolic energy cost of the analytical model for the parameterized
trajectories in Group A1 is shown in Fig. 6.6(a), while those of the
musculoskeletal model and the reference model [76] are shown in Fig. 6.6(b)
and 6.6(c), respectively.

The duration of movements is 0.5s. In Fig. 6.6, each point (De, Ds)
represents a trajectory. The global minimum is marked by a red cross.
For the analytical model moving in Group A1, the minimum energy cost
is found at De = −7◦ and Ds = 0◦, with a minimal value of 17.662J . For
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the musculoskeletal model moving in Group A1, the minimum is found at
De = 0◦ and Ds = 10◦, with a minimal metabolic energy cost of 14.764J .
The CPU time for calculating minimal energy cost for the three models is
list in Table 6.4. It is seen that the analytical model developed in this work
is more efficient compared with the other two models.

Table 6.4: Computational time for the three models.
Model Elapsed time [s]
Analytical 20
Musculoskeletal 7.13× 104

Reference 37

(a) (b)

(c)

Figure 6.6: Metabolic energy cost contours obtained with different models, (a)
the analytical model, (b) the musculoskeletal model, (c) the reference model
reported in [76].
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6.6.3 Optimal trajectories

Based on the metabolic energy cost contour, the optimal trajectories can
be identified. The optimal trajectories predicted by the proposed two
models and the reference model are shown in Fig. 6.7 for comparison.
The optimal trajectories obtained with different models are marked with
specified symbols. Optimal trajectories for both forward and backward
arm motions are displayed. The dashed line indicates the path of the
hand, and the moving direction is marked by the arrow. The elbow (De)
and shoulder (Ds) angle deviations and metabolic energy costs (Em) for
optimal trajectories in Fig. 6.7 are summarized in Table 6.5. The elbow
and shoulder joint velocities for the optimal trajectories from Groups A1 to
D1 are depicted in Fig. 6.8, while Fig. 6.9 shows the corresponding hand
velocities.

(a) Group A1 (b) Group B1 (c) Group C1 (d) Group D1

(e) Group A2 (f) Group B2 (g) Group C2 (h) Group D2

Figure 6.7: Optimal trajectories predicted by the proposed two models and a
reference model [76]. The hand paths are marked with dots (•), triangle (4), and
box symbols for the proposed analytical, musculoskeletal and reference models,
respectively.
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The two proposed models predict very similar optimal trajectories with
respect to the reference model, even though the reference model greatly
underestimates the metabolic energy consumption. There are some discrep-
ancies of the optimal trajectories predicted by the musculoskeletal model
and the other two models in Groups A1 and A2. This may be due to the
deviations of the musculoskeletal model.

The hand velocities of the optimal trajectories show bell-shape profiles,
which have a good agreement with the straight arm motion observed by
[66]. Fig. 6.7 shows that unconstrained point-to-point motions are not only
approximately straight, but also metabolic energy optimal.

The optimal trajectories in forward and backward arm movements, dis-
played in Fig. 6.7(a)-6.7(c) and Fig. 6.7(e)-6.7(g), respectively, show that
they do not necessarily follow the same hand paths in forward and backward
movements.

Table 6.5: Elbow (De) and shoulder angle deviation (Ds) and metabolic cost
(Em) of optimal trajectories in Fig.6.7.
Model Group A1 Group B1 Group C1 Group D1

De Ds Em De Ds Em De Ds Em De Ds Em
Analytical −7◦ 0◦ 17.662 J 2◦ −1◦ 6.816 J 15◦ −2◦ 22.934 J 0◦ 0◦ 6.939 J
Musculoskeletal 0◦ 10◦ 14.764 J 5◦ 0◦ 3.537 J 20◦ 0◦ 24.594 J 15◦ 0◦ 14.505 J
Ref. Model −11◦ 1◦ 2.614 J 0◦ −1◦ 1.46 J 26◦ −4◦ 10.929 J 17◦ −3◦ 1.422 J

Group A2 Group B2 Group C2 Group D2
Analytical −1◦ 5◦ 28.792 J 5◦ −3◦ 20.980 J 17◦ −4◦ 19.982 J 20◦ 0◦ 23.751 J
Musculoskeletal 15◦ 10◦ 14.429 J 5◦ 0◦ 5.875 J 20◦ −5◦ 14.670 J 25◦ 0◦ 26.340 J
Ref. Model −3◦ 6◦ 3.916 J 10◦ −5◦ 4.862 J 17◦ −4◦ 2.045 J 30◦ −2◦ 12.113 J

6.6.4 Metabolic power of optimal trajectories

Metabolic power of the optimal trajectories for target points in Groups A1
and C1 are calculated by the two proposed models and the reference model,
as shown in Fig. 6.10. The metabolic power is calculated based on the
optimal trajectories obtained by the analytical model. It is seen that the
analytical and the musculoskeletal model predict similar profile of metabolic
power consumption, even though the analytical model overestimates the
power a bit than the musculoskeletal one. Nevertheless, the model reported
by Alexander underestimates the metabolic power significantly compared
to the two proposed models.

6.6.5 Different durations with the analytical model
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Optimal trajectories in Group A1 for four different durations (0.3 s, 0.5 s,
0.8 s, 1s) predicted by the analytical model are shown in Fig. 6.11. Details of
the optimal trajectories with the four time durations are listed in Table 6.6.
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Figure 6.8: Angular velocities of elbow joint (ωe, solid curve) and shoulder joint
(ωs, dashed curve) corresponding to optimal trajectories for motions of Groups
A1, B1, C1 and D1 in Fig. 6.7. The velocity curves are marked with dots (•),
triangle (4), and box symbols for the proposed analytical, musculoskeletal and
reference models, respectively.
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For motions in Groups B1, C1 and D1, all the optimal trajectories for four
different durations are almost identical, according to the values of De and
Ds in Table 6.6.

In Group A1, the optimal trajectories of the fast movements (0.3 s, 0.5 s)
and those of the slow movements (0.8s, 1s) show a nearly straight path of
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Figure 6.9: Hand velocities of the corresponding optimal trajectories of Groups
A1, B1, C1 and D1 in Fig. 6.7. The velocity curves are marked with dots (•),
triangle (4), and box symbols for the proposed analytical, musculoskeletal and
reference models, respectively.
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Figure 6.10: Metabolic power of optimal trajectories in Groups A1 and C1
predicted by the analytical, musculoskeletal and reference models.

Table 6.6: Elbow and shoulder angle deviations of optimal trajectories with
different durations predicted by the analytical model.

Points 0.3 s 0.5 s 0.8 s 1 s
De Ds De Ds De Ds De Ds

Group A1 −7◦ 0◦ −7◦ 0◦ −3◦ −1◦ 24◦ −12◦

Group B1 2◦ −1◦ 2◦ −1◦ 2◦ −1◦ 2◦ −1◦

Group C1 16◦ −3◦ 15◦ −2◦ 15◦ −2◦ 15◦ −2◦

Group D1 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦

the hand, as that [66] observed. No significant differences are observed.

6.7 Discussions

It can be noticed that all models, the analytical and musculoskeletal models
and the reference model, lead to very similar optimal trajectories. Also, the
model-predicated optimal trajectories match the observed human planar
arm movements [66].

The analytical model takes a simple form with only four torque providers
included, compared to the musculoskeletal model using 134 muscles. On
the other hand, the metabolic energy costs calculated by the two proposed
models and reference model have considerable differences, as shown in
Table 6.5. In some cases, the muscles in a human arm are antagonistic
to causing substantial energy waste. This part of energy cost is considered
in the proposed analytical model and the musculoskeletal model, but not in
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Figure 6.11: Optimal trajectories in Group A1 corresponding to four different
durations by the proposed analytical model. The hand paths are marked with
dots (◦), cross (×), triangle (4), and box symbols for duration 0.3 s, 0.5 s, 0.8 s,
and 1 s, respectively.

the reference model. It is apparent that the metabolic costs calculated by
the two models developed presently are much larger than that calculated
by the reference model. In some cases, the metabolic cost calculated by
the analytical model is even a bit larger than that by the musculoskeletal
model. It is reasonable that the musculoskeletal model is considered as a
better predictor of metabolic energy cost.

Predicted optimal trajectories in all groups are similar among the three
models, except Groups A1 and A2. The differences are apparent if we
look into the elbow angle deviation De and shoulder angle deviation Ds in
Table 6.5. The elbow angle deviation De differences among Groups B1, C1,
D1 is below 17◦, and the shoulder angle deviation Ds differences is below 4◦.
Comparing forward and backward arm motions like Groups B1 and B2, the
optimal trajectories of the forward motions (Group B1) are similar to those
of the backward motions (Group B2). However, the optimal trajectories
of forward motions in Group A1 and backward motions in Group A2 are
different, especially those predicted by the analytical and reference models.
The trajectories predicted by the two models in Fig. 6.7(a) show almost
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straight paths, and those in Fig. 6.7(e) show apparent curved paths.

Besides, the computational times with the analytical and musculoskeletal
models are significantly different. The analytical model involves only
numerical calculation, and is much more efficient than the musculoskeletal
model. A natural progression of the work is to investigate whether a joint
moment-driven model, which can be even more computationally efficient,
can also provide valid results, thus eliminating the need for muscles in the
model.

6.8 Conclusions

In this paper, an analytical and a musculoskeletal models were developed
and compared with a reference model. Both models are able to calculate
metabolic cost. Optimal trajectories were identified with the developed
models for planar arm movements. The comparisons between the three
models showed that even though the two proposed models and the reference
model predict similar optimal trajectories, the reference model greatly
underestimates the metabolic cost. Among the two newly proposed models,
the musculoskeletal model is more accurate in predicting the metabolic
energy cost while the analytical one is more efficient in predicting optimal
trajectories. Given the fact that the predication results from two models
are very close, the simple analytical model can replace the complicated
musculoskeletal model in predicting metabolic costs and energy efficient
trajectories in certain applications where the overall behavior of the arm
motion is of interest.
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7
Conclusions

The main scope of this work is the development of a novel optimization
approach for the design of lightweight robotic arms. A new optimization
approach was developed for robot optimization to handle selection of motors
and gearboxes, geometric and structural dimensions. This was achieved
through stepwise optimization in three levels, starting from the constraints
of motors and gearboxes, then the constraints of kinematic performance,
and finally structural strength constraints.

7.1 Summary of articles
Article I

Article I presents an optimization method for robotic drive-trains. The
selection of motors and gearboxes was formulated as a discrete optimization
problem, which was solved by a non-gradient optimization algorithm.
Constraints were formulated by considering both motor and gearbox
characteristics and robotic arm dynamics. The proposed method is able
to reach a design with lower mass for a given set of driving components.
A co-simulation platform consisting of a MSC.ADAMS dynamics model
and an optimization algorithm implemented in Matlab code was developed,
which enabled design optimization based on dynamics of an embodiment
created in CAD systems.

The total weight of the robotic arm was optimized to 10.2 kg, a reduction
of 38% compared with the initial design. The solution to the optimal result
was achieved after 3160 iterations with a population size of 140. The optimal
design reduced the peak torque by 31.8% reduction for Joint 1 and by 40%
for Joint 2.

Two ways of dealing with the design variables were investigated in order
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to confirm a more efficient one. The linear design variable method
yielded better results at the cost of more iterations and objective function
evaluations. The rounded design variable method was more efficient
according to the comparison results.

Article II

Article II reports an extension of the work in Article I by integrating
the geometric dimension together with drive-train optimization. Global
conditioning index (GCI) was taken as a constraint on kinematic perfor-
mance of the robot. The robot dynamics was constrained by considering
characteristics of motors and gearboxes.

With this method, the optimized mass of the robotic arm was equal to
9.92 kg, with a reduction of 41% corresponding to the initial combinations.
The optimal link length ratio was found as r = 0.6. The solution to the
optimal result was achieved at 3500 iterations with 130 population sizes.
The optimized design had a reduction of 41.29% RMS torque for Joint 1,
and a reduction of 26.87% RMS torque for Joint 2.

Article III

Article III presents an integrated approach for the design of lightweight
robotic arms. Selections of structural dimensions, geometric dimensions,
motors and gearboxes were formulated as a discrete optimization problem.
Both structural strengths and end-effector deformation were formulated as
constraints through finite element analysis. A co-simulation platform was
developed, which integrated Matlab with ANSYS Workbench.

A major mass reduction was achieved with the optimization under the
constraint of structural strength, which reduced further the mass of the
upper and lower arm links by 1.7 kg. The integrated method yielded an
optimized robotic arm of 8.3 kg, a mass reduction to 50% of the initial
design. The solution to the optimal result was achieved at 6500 iterations
with 150 population sizes. The optimal design had a reduction of 51% RMS
torque for Joint 1, and a reduction of 72% RMS torque for Joint 2.

The optimization results from Article I to III are summarized in Table 7.1.

Article IV



Chapter 7. Conclusions 127

Table 7.1: Summary of the robotic optimization results.

Article Optimized Mass1 Torque2 Population Iteration
Mass Reduction Reduction Size Number

I 10.2 kg 38% 31.8% 140 3160
II 9.92 kg 41% 41.29% 130 3500
III 8.3 kg 50% 51% 150 6500

1 Relative to the mass of 16.7 kg of the initial design
2 For Joint 1

Article IV presents preliminary study of human arm motion for energy
optimal trajectories. An approach for predicting metabolic cost in the
planar human arm motion by means of the biomechanical simulation was
proposed in this work. Two biomechanical models, including an analytical
model and a musculoskeletal model, were developed to implement the
proposed approach. The analytical model was developed by modifying a
human muscle expenditure model, in which the muscles were grouped as
torque providers for computation efficiency. In the musculoskeletal model,
the predication of metabolic cost was conducted on the basis of individual
muscles. The simulation results of the two proposed models were compared
to a reference model.

It showed from the simulation results that the analytical model predicted
metabolic power similar to the musculoskeletal model. The two proposed
models predicted very similar optimal trajectories with respect to the
reference model, even though the reference model greatly underestimated
the metabolic energy consumption. The simple analytical model could
replace the complicated musculoskeletal model in predicting metabolic costs
and energy efficient trajectories in certain applications where the overall
behavior of the arm motion is of interest.

7.2 Concluding remarks

Through utilizing optimization method in robot design, a fully integrated
optimization approach was developed for the design of lightweight robots.
The approach provides a systematic robot design optimization method
for lightweight purpose. For a draft robot design with given joint
configurations, the approach can be used to select drive-train components,
geometric and structural dimensions. Other design criteria like minimum
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cost, minimum energy consumption could also be included and defined in
the objective function in the proposed approach.

A 5-dof lightweight robotic arm was designed and developed based on the
selected drive-train components and dimensions from the optimization. The
prototype weighs 14 kg with a payload capacity of 5 kg.

The optimization approach in this thesis presents a structured and efficient
way of addressing a robot design problem where much insight could be
gained during the iterative process of solving the optimization problem.

7.3 Contributions

Within this project, the following contributions to the design and optimiza-
tion of lightweight robotic arms were made

• New robotic optimization methods were developed. It is the first
time to integrate the drive-train, kinematics and structural dimensions
together in the optimization design of robots for minimal mass.

• Three extensible simulation platforms for robot simulation were de-
veloped. The platforms integrate numeric programming software with
commercial dynamic simulation and FEA simulation software. The
platforms could be easily expanded to contain more design variables
on different robotic parameters and the corresponding constraints.

• A prototype of the 5-dof lightweight robotic arm was built to validate
the optimization approaches. The prototype can be used to validate
the different simulation models developed within the project.

• Two new human arm motion models were proposed for energy-optimal
trajectory predictions. The models provide an approach of studying
arm control strategies of generating arm trajectories.

7.4 Future work

The optimization approach in this thesis focused on the mechatronic part of
the robotic arm. Robot control is a key competence for robot manufacturers
and is very important in order to get as much performance as possible out
of a robot. Tuning of control parameters is also crucial for a robotic arm.
One possible direction of the future work is to combine the mechanical
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system design together with the control system design in the whole system
optimization. Control parameters could be taken as design variables in the
optimization.

A 5-dof lightweight robotic arm was built in the project. A control system
has been developed for the robot. One task is to develop a control
model containing control methods for trajectory planning. Preliminary
study has been conducted on the control strategies of human arm through
biomechanics modeling and simulation. More studies are needed to
implement the control strategies and develop a control model for the robot.
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Nomenclature

q position vector

R rotation matrix
jAi homogeneous transformation matrix

θ̈ joint angular acceleration

θ̇ joint angular velocity

J Jacobian matrix

vef end-effector velocity

vc linear velocity of the center of mass of link

ω angular velocity of link

I inertia matrix

M mass matrix

ξ(G) vector of gravitational forces

v(V) vector of Coriolis and centrifugal terms

ηg gear efficiency

um array of index numbers for motors

ug array of index numbers for gearboxes

xb(xw) best (worst) design point

xc the centroid of all design points

xcand candidate design point

ρ gear ratio

τ required joint torque

Jm moment of inertia of a motor

Jg moment of inertia of a gear

mm(mg) mass of a motor (gear)

Nmax
g max permissible input speed of gearbox

Nmax
m max permissible motor speed
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np required motor peak speed

nin required max input peak speed of gearbox

Tmax
g limit for momentary peak torque of gearbox

Tmax
m motor stall torque

Tg limit for rated torque of gearbox

Tm nominal motor torque

τg required gear peak torque

τm required motor torque

τp required motor peak torque

τrmc RMC value of required joint torque

τrms RMS value of required motor torque

GCI global conditioning index

Cmin minimum acceptable GCI

ud array of index numbers for dimensions

r vector of link length ratio

Smax maximum von-Mises stress

Sy yield strength

Dmax maximum deflection of the end-effector

Dlim acceptable deflection of the end-effector

Ė total energy expenditure rate of a single muscle

Lopt optimal fiber length of a torque provider

Mmax maximum strength-moment

Miso moment generated by muscle isometric force

Ms(Me) joint moment generated at shoulder (elbow) joint

Pmech mechanical power of a muscle-tendon unit

Pm metabolic power of a muscle-tendon unit

Ds(De) angle deviation of the shoulder (elbow) joint

Em metabolic energy cost
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